Search results for "interferometry"

showing 10 items of 343 documents

Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry

2017

Abstract Pultrusion is a process allowing the production of unidirectional (roving) fibre-reinforced polymer (FRP) structural elements with constant cross section. Recently, also civil engineers focused their attention on pultruded composite materials as alternative to traditional ones (e.g., concrete, steel). Furthermore, to improve the transverse strength and stiffness with respect to the fibres direction, continuous filament mat (CFM) is often placed within the stacking sequence. The CFM influence on the global mechanical behaviour is not considered by appropriate actual international standards. In this paper, the influence of the CFM layers on the mechanical behaviour of glass fibres pu…

Materials scienceStress analysis02 engineering and technologyBendingElectronic Speckle-Pattern Interferometry (ESPI)Stress (mechanics)0203 mechanical engineeringElectronic speckle pattern interferometrymedicineStrain fieldComposite materialContinuous filament mat (CFM)Civil and Structural EngineeringStructural materialbusiness.industryMechanical EngineeringStiffnessPultruded compositeStructural engineeringFibre-reinforced plastic021001 nanoscience & nanotechnologyCompression (physics)020303 mechanical engineering & transportsSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiPultrusionmedicine.symptom0210 nano-technologybusinessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Ultralow chirp photonic crystal fiber Mach-Zehnder interferometer

2018

A photonic crystal fiber Mach-Zehnder interferometer design was optimized to obtain high performance and ultralow chirp. Two long-period gratings were used to excite the cladding modes, and the rich structure of the cladding was tailored to obtain a slightly chirped free spectral range, as required by the Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T) Norm G.694.1. Finally, a fabrication tolerance analysis was performed. The advantages of the proposed device are an ultralow chirp, high bandwidth, and fabrication robustness tolerance.

Materials scienceTolerance analysisbusiness.industry02 engineering and technologyÒpticaCladding (fiber optics)Coupled mode theoryMach–Zehnder interferometer01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsInterferometry020210 optoelectronics & photonicsOptics0103 physical sciences0202 electrical engineering electronic engineering information engineeringChirpElectrical and Electronic EngineeringbusinessEngineering (miscellaneous)Free spectral rangePhotonic-crystal fiber
researchProduct

Thermo-optic control of dielectric-loaded plasmonic waveguide components

2010

International audience; We report preliminary results on the development of compact (length 20%) is demonstrated with MZI-and WRR-based components, and efficient (similar to 30%) rerouting is achieved with DC switches. (C) 2010 Optical Society of America

Materials scienceTransducersPhysics::Optics02 engineering and technologyDielectric01 natural sciencesWAVELENGTH010309 opticsOptics0103 physical sciencesElectric ImpedanceMODULATION[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPolymer waveguide[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industrySurface plasmonPhotonic integrated circuitTemperatureEquipment DesignSurface Plasmon Resonance021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsEquipment Failure AnalysisWavelengthRefractometryTransducerInterferometryPlasmonic waveguideModulation[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[ SPI.OPTI ] Engineering Sciences [physics]/Optics / PhotonicElectronics0210 nano-technologybusiness
researchProduct

Optical quality comparison among different Boston contact lens materials.

2014

BACKGROUND The aim was to assess the optical quality of four Boston contact lens materials with an optical device based on Schlieren interferometry. METHODS The NIMO TR1504 (Lambda-X, Nivelles, Belgium) was used to measure higher-order aberrations and their corresponding root mean square values of four different rigid gas permeable contact lenses made from four different Boston materials: EO, ES, XO and XO2 . For each lens, 30 measurements were performed with two optical apertures: 3.0 mm and 6.0 mm. The modulation transfer function, point spread function, Strehl ratio and a simulation of the image provided by the lens were computed from the Zernike coefficients measured up to the fourth or…

Materials sciencebusiness.industryApertureContact LensesStrehl ratio02 engineering and technology021001 nanoscience & nanotechnologylaw.inventionRoot mean squareContact lensLens (optics)03 medical and health sciencesOphthalmologyInterferometry0302 clinical medicineOpticslawSchlierenOptical transfer function030221 ophthalmology & optometry0210 nano-technologybusinessOptometryClinicalexperimental optometry
researchProduct

Laser Vibrometer Interferometry for Speckle Patterns Tracking Systems

2017

In this paper we propose a modulated laser system combining a speckle pattern tracking method for surface tilting changes sensing with an interferometer for surface z-axis changes sensing at the same scan time.

Materials sciencebusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsSpeckle noiseTracking system02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural scienceslaw.invention010309 opticsInterferometrySpeckle patternOpticslawElectronic speckle pattern interferometry0103 physical sciencesSpeckle imaging0210 nano-technologybusinessLaser Doppler vibrometerConference on Lasers and Electro-Optics
researchProduct

Young's modulus measurement of the radius bone using a shearing interferometer with carrier fringes

2010

Abstract A technique for measuring Young's modulus of the radius bone by using electronic speckle-shearing pattern interferometry is proposed. The technique is based on the introduction of carrier fringes and the use of a phase unwrapping algorithm to obtain a phase map corresponding to the out-of-plane displacements of a radius bone without sign ambiguities. The carrier fringes are obtained by the correlation algorithm of two consecutive speckle fields with a translation of the illuminating beam between each recording, then the spatial synchronous detection (SSD), an unwrapping phase algorithm and integration process along shear direction are successfully applied for obtaining a displaceme…

Materials sciencebusiness.industryMechanical EngineeringYoung's modulusRadius boneAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialssymbols.namesakeInterferometrySpeckle patternmedicine.anatomical_structureOpticsShearographyElectronic speckle pattern interferometrymedicinesymbolsSpeckle imagingElectrical and Electronic EngineeringShearing interferometerbusinessOptics and Lasers in Engineering
researchProduct

Passive interferometric interrogation of a magnetic field sensor using an erbium doped fiber optic laser with magnetostrictive transducer

2015

Abstract An erbium doped (Er3+) fiber optic laser is proposed for magnetic field measurement. A pair of FBGs glued onto a magnetostrictive material (Terfenol-D rod) modulates the laser wavelength operation when subject to a static or a time dependent magnetic field. A passive interferometer is employed to measure the laser wavelength changes due to the applied magnetic field. A data acquisition hardware and a LabVIEW software measure three phase-shifted signals at the output coupler of the interferometer and process them using two distinct demodulation algorithms. Results show that sensitivity to varying magnetic fields can be tuned by introducing a biasing magnetic field. A maximum error o…

Materials sciencebusiness.industryMetals and Alloyschemistry.chemical_elementPhysics::OpticsFísicaMagnetostrictionOutput couplerCondensed Matter PhysicsLaserSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetic fieldlaw.inventionErbiumInterferometryOpticsTransducerchemistrylawFiber laserElectrical and Electronic EngineeringbusinessInstrumentation
researchProduct

Plasmonic-assisted Mach-Zehnder Interferometric photonic sensor using aluminum waveguides

2020

We demonstrate a CMOS compatible interferometric plasmo-photonic sensor exploiting SisN4 photonic and aluminum (Al) plasmonic stripe waveguides. Experimental evaluation revealed bulk sensitivity of 4764 nm/RIU, holding promise for ultra-sensitive and low cost sensing devices.

Materials sciencebusiness.industryPhotonic sensorPhysics::Opticschemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyMach–Zehnder interferometer01 natural sciences010309 opticsInterferometrychemistryAluminium0103 physical sciencesOptoelectronicsPhotonics0210 nano-technologybusinessSensitivity (electronics)Refractive indexPlasmonConference on Lasers and Electro-Optics
researchProduct

Scaling the Sensitivity of Integrated Plasmo-Photonic Interferometric Sensors

2019

We present a new optical biosensing integration approach with multifunctional capabilities using plasmonic and photonic components on the same chip and a new methodology to design interferometric b...

Materials sciencebusiness.industryPhysics::Optics02 engineering and technology021001 nanoscience & nanotechnologyChip01 natural sciencesAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials010309 opticschemistry.chemical_compoundInterferometrySilicon nitridechemistry0103 physical sciencesOptoelectronicsIntegrated opticsSensitivity (control systems)Electrical and Electronic EngineeringPhotonics0210 nano-technologybusinessScalingPlasmonBiotechnologyACS Photonics
researchProduct

Interferometric Z-scan method for thermo-optical effect studies

2021

We demonstrated a new approach to measuring third-order nonlinear optical effects using an experimental setup incorporating both Z-scan and Mach-Zehnder interferometer methods. This method could be especially purposive for thermo-optical effect studies as it can simultaneously probe thermal gradient profile as well as absolute temperature changes induced by an optical beam. The experimental setup was tested using chloroform. Experimental measurements were carried out using 1064 nm Nd:YAG laser with 8 ns pulse width and 40 kHz pulse repetition rate. The measured nonlinear refractive index of chloroform was mainly induced by the thermo-optical effect. As thermo-optical response depends on bea…

Materials sciencebusiness.industryPhysics::OpticsNonlinear opticsLaserMach–Zehnder interferometerlaw.inventionInterferometryTemperature gradientOpticslawFocal lengthZ-scan techniquebusinessPulse-width modulationNonlinear Optics and Applications XII
researchProduct