Search results for "interferometry"

showing 10 items of 343 documents

Active plasmonics in WDM traffic switching applications

2012

With metal stripes being intrinsic components of plasmonic waveguides, plasmonics provides a "naturally" energy-efficient platform for merging broadband optical links with intelligent electronic processing, instigating a great promise for low-power and small-footprint active functional circuitry. The first active Dielectric-Loaded Surface Plasmon Polariton (DLSPP) thermo-optic (TO) switches with successful performance in single-channel 10 Gb/s data traffic environments have led the inroad towards bringing low-power active plasmonics in practical traffic applications. In this article, we introduce active plasmonics into Wavelength Division Multiplexed (WDM) switching applications, using the …

Optical fiberComputer scienceTRANSMISSIONTransducersSilicon on insulator02 engineering and technology01 natural sciencesMultiplexingArticlelaw.invention010309 opticsMetalPOWER THERMOOPTICAL SWITCHlawWavelength-division multiplexing0103 physical sciencesElectronic engineeringFiber Optic TechnologySurface plasmon resonanceSILICON-ON-INSULATORPlasmonElectronic circuitMultidisciplinaryCHIPReproducibility of ResultsEquipment DesignSurface Plasmon ResonancePERFORMANCE021001 nanoscience & nanotechnologyChipSurface plasmon polaritonInterferometryWavelengthInterferometryTransducerPlasmonic waveguidevisual_artTelecommunicationsvisual_art.visual_art_mediumPOLARITON WAVE-GUIDES0210 nano-technology
researchProduct

A Computational Study on Temperature Variations in MRgFUS Treatments Using PRF Thermometry Techniques and Optical Probes

2021

Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper

Optical fiberMaterials scienceInterferometric optical fibers MRgFUS Proton resonance frequency shift RBF neural networks Referenceless thermometry Temperature variationslcsh:Computer applications to medicine. Medical informaticsImaging phantomlcsh:QA75.5-76.95Article030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciencesinterferometric optical fibers0302 clinical medicinelawMedical imagingRadiology Nuclear Medicine and imaginglcsh:PhotographyElectrical and Electronic EngineeringReferenceless ther-mometryProton resonance frequencytemperature variationsbusiness.industryMRgFUSUltrasoundproton resonance frequency shiftFocused ultrasound surgerylcsh:TR1-1050Computer Graphics and Computer-Aided DesignRBF neural networksClinical PracticeInterferometryreferenceless thermometrylcsh:R858-859.7Computer Vision and Pattern Recognitionlcsh:Electronic computers. Computer sciencebusiness030217 neurology & neurosurgeryInterferometric optical fibers; MRgFUS; Proton resonance frequency shift; RBF neural networks; Referenceless ther-mometry; Temperature variationsBiomedical engineeringJournal of Imaging
researchProduct

Erbium doped optical fiber lasers for magnetic field sensing

2015

In this work two erbium doped optical fiber laser configurations for magnetic field measurement are implemented and compared. The first laser is set-up in a loop configuration and requires only a single FBG (Fiber Bragg Grating), acting as mirror. A second laser employs a simpler linear cavity configuration but requires two FBGs with spectral overlap to form the laser cavity. A bulk magnetostrictive material made of Terfenol-D is attached to the laser FBGs enabling modulation of its operation wavelength by the magnetic field. Moreover, a passive interferometer was developed to demodulate the AC magnetic field information where the corresponding demodulation algorithms were software based. B…

Optical fiberMaterials sciencebusiness.industryMagnetismPhysics::Opticschemistry.chemical_elementLaserlaw.inventionErbiumInterferometryOpticschemistryFiber Bragg gratinglawOptical cavityAstronomical interferometerbusinessSPIE Proceedings
researchProduct

A frequency-output fiber optic voltage sensor with temperature compensation for power systems

2003

Abstract We present a frequency-output fiber optic voltage sensor for power systems with temperature compensated response. The sensor employs PZT-type ceramic tubes, which are interrogated by a length of single-mode fiber coiled onto the tubes and a Mach–Zehnder interferometer. The combination of piezoelectric tubes with properties exhibiting opposite behavior to temperature changes is successfully exploited to passively compensate the temperature sensitivity of the sensor. The prototype reported here exhibits a resolution of 13 mV rms and the deviations of the sensor’s response due to temperature changes are within 1% over the temperature range between −30 and 70 °C. The device presented h…

Optical fiberMaterials sciencebusiness.industryMetals and AlloysHigh voltageAtmospheric temperature rangeCondensed Matter PhysicsPiezoelectricitySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionCompensation (engineering)InterferometryOpticslawFiber optic sensorFiberElectrical and Electronic EngineeringbusinessInstrumentationSensors and Actuators A: Physical
researchProduct

Single-shot digital holography
by use of the fractional Talbot effect

2009

We present a method for recording in-line single-shot digital holograms based on the fractional Talbot effect. In our system, an image sensor records the interference between the light field scattered by the object and a properly codified parallel reference beam. A simple binary two-dimensional periodic grating is used to codify the reference beam generating a periodic three-step phase distribution over the sensor plane by fractional Talbot effect. This provides a method to perform single-shot phase-shifting interferometry at frame rates only limited by the sensor capabilities. Our technique is well adapted for dynamic wavefront sensing applications. Images of the object are digitally recon…

Optics and PhotonicsHolographyHolographyPhysics::Opticslaw.inventionImaging Three-DimensionalOpticslawImage Processing Computer-AssistedTalbot effectComputer SimulationImage sensorWavefrontPhysicsbusiness.industryLasersTalbot effectReproducibility of ResultsEquipment DesignFrame rateAtomic and Molecular Physics and OpticsInterferometryInterferometryReference beamImagebusinessDigital holographyOptics Express
researchProduct

Plasmonics co-integrated with silicon nitride photonics for high-sensitivity interferometric biosensing

2019

We demonstrate a photonic integrated Mach-Zehnder interferometric sensor, utilizing a plasmonic stripe waveguide in the sensing branch and a photonic variable optical attenuator and a phase shifter in the reference arm to optimize the interferometer operation. The plasmonic sensor is used to detect changes in the refractive index of the surrounding medium exploiting the accumulated phase change of the propagating Surface-Plasmon-Polariton (SPP) mode that is fully exposed in an aqueous buffer solution. The variable optical attenuation stage is incorporated in the reference Si3N4 branch, as the means to counter-balance the optical losses introduced by the plasmonic branch and optimize interfe…

Optics and PhotonicsMaterials sciencePhysics::OpticsBiosensing Techniques02 engineering and technologyMach–Zehnder interferometer01 natural scienceslaw.invention010309 opticsOpticsElectricitylaw0103 physical sciencesExtinction ratiobusiness.industrySilicon Compounds021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsRefractometryInterferometryInterferometryPhotonics0210 nano-technologybusinessOptical attenuatorWaveguideRefractive indexFree spectral rangeOptics Express
researchProduct

Dynamical masses of the low-mass stellar binary AB Doradus B

2015

Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDor A/C and ABDor Ba/Bb. The pair ABDor A/C has been extensively studied and its dynamical masses have been determined with high precision, thus making of ABDor C a benchmark for calibrating PMS stellar models. If the orbit and dynamical masses of the pair ABDor Ba/Bb can be determined, they could not only play a similar role to that of ABDor C in calibrating PMS models, but would also help to better understand the dynamics of the whole ABDoradus system. Aims. We aim to determine the individual masses of the pair ABDor Ba/B…

Orbital elementsPhysicsAstrofísica[PHYS]Physics [physics]InfraredFOS: Physical sciencesBinary numberAstronomy and AstrophysicsContext (language use)AstrophysicsStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceVery-long-baseline interferometryOrbit (dynamics)AstronomiaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Solar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUS
researchProduct

Radio detection of the young binary HD 160934

2013

Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 an…

Orbital elementsPhysicsEuropean VLBI NetworkAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceVery-long-baseline interferometryOrbital motionBinary starAstrophysics::Solar and Stellar AstrophysicsStellar evolutionAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)AB Doradus moving group
researchProduct

Permittivity Measurements of Lossy Liquids at Millimeter-Wave Frequencies

1983

A measurement system is described which allows the determination of the complex permittivity of high-loss liquids at millimeter waves. Basically, the setup consists of a waveguide interferometer whose unknown arm embodies a liquid holder irradiated by an open-ended rectangular waveguide. The sample thickness is varied by means of a piston driven by a micrometer screw. The bridge output then is read as a function of the liquid thickness. Best fitting between experimental and computed data through a suitable model of the system enables the permittivity to be determined. The system can operate, with high sensitivity, over the whole frequency range of the dominant mode propagating in the wavegu…

PermittivityRadiationMaterials sciencebusiness.industrySystem of measurementRelative permittivityCondensed Matter PhysicsWaveguide (optics)law.inventionInterferometryOpticslawExtremely high frequencyMicrometerMillimeterElectrical and Electronic EngineeringbusinessIEEE Transactions on Microwave Theory and Techniques
researchProduct

On-line monitoring of one-step laser fabrication of micro-optical components

2002

The use of an on-line monitoring method based on photoelasticity techniques for the fabrication of micro-optical components by means of controlled laser heating is described. From this description it is possible to show in real time the mechanical stresses that form the microelement. A new parameter, stressed area, is introduced that quantifies the stresses of a microelement during its fabrication, facilitating a deeper understanding of the physical phenomena involved in the process as well as being a useful test of quality. It also permits the stress produced in the manufacturing process and the optical properties of the final microelement to be correlated. The results for several microlen…

PhotoelasticityFabricationMaterials sciencebusiness.industryMaterials Science (miscellaneous)Process (computing)Mechanical engineeringIndustrial and Manufacturing EngineeringLine (electrical engineering)law.inventionStress (mechanics)InterferometryOpticsOptical microscopelawBusiness and International ManagementbusinessRefractive indexApplied Optics
researchProduct