Search results for "interpolation."
showing 10 items of 253 documents
A note on banach partial *-algebras
2006
A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of such objects and display a number of examples, namely LP-like function spaces and spaces of operators on Hilbert scales.
Remarks on mapping properties for the Bargmann transform on modulation spaces
2011
We investigate the mapping properties for the Bargmann transform and prove that this transform is isometricand bijective from modulation spaces to convenient Banach spaces of analytic functions.
Unconditional Basis and Gordon–Lewis Constants for Spaces of Polynomials
2001
Abstract No infinite dimensional Banach space X is known which has the property that for m ⩾2 the Banach space of all continuous m -homogeneous polynomials on X has an unconditional basis. Following a program originally initiated by Gordon and Lewis we study unconditionality in spaces of m -homogeneous polynomials and symmetric tensor products of order m in Banach spaces. We show that for each Banach space X which has a dual with an unconditional basis ( x * i ), the approximable (nuclear) m -homogeneous polynomials on X have an unconditional basis if and only if the monomial basis with respect to ( x * i ) is unconditional. Moreover, we determine an asymptotically correct estimate for the …
The support localization property of the strongly embedded subspaces of banach function spaces
2015
[EN] Motivated by the well known Kadec-Pelczynski disjointifcation theorem, we undertake an analysis of the supports of non-zero functions in strongly embedded subspaces of Banach functions spaces. The main aim is to isolate those properties that bring additional information on strongly embedded subspaces. This is the case of the support localization property, which is a necessary condition fulflled by all strongly embedded subspaces. Several examples that involve Rademacher functions, the Volterra operator, Lorentz spaces or Orlicz spaces are provided.
Existence theorems for m-accretive operators in Banach spaces
2005
Abstract In 1985, the second author proved a surjective result for m -accretive and ϕ -expansive mappings for uniformly smooth Banach spaces. However, in this case, we have been able to remove the uniform smoothness of the Banach space, without any additional assumption.
The fractal interpolation for countable systems of data
2003
In this paper we will extend the fractal interpolation from the finite case to the case of countable sets of data. The main result is that, given an countable system of data in [a, b] ? Y, where [a, b] is a real interval and Y a compact and arcwise connected metric space, there exists a countable iterated function system whose attractor is the graph of a fractal interpolation function.
Weakly compact multilinear mappings
1997
The notion of Arens regularity of a bilinear form on a Banach space E is extended to continuous m-linear forms, in such a way that the natural associated linear mappings, E→L (m−1E) and (m – l)-linear mappings E × … × E → E', are all weakly compact. Among other applications, polynomials whose first derivative is weakly compact are characterized.
A multilinear Lindenstrauss theorem
2006
Abstract We show that the set of N -linear mappings on a product of N Banach spaces such that all their Arens extensions attain their norms (at the same element) is norm dense in the space of all bounded N -linear mappings.
The λ-Error Order in Multivariate Interpolation
2005
The aim of this article is to introduce and to study a generalization of the error order of interpolation, named λ – error order of interpolation. This generalization makes possible a deeper analysis of the error in the interpolation process. We derived the general form of the λ – error order of interpolation and then we applied it for many choices of the functional λ.
Some Classes of Operators on Partial Inner Product Spaces
2012
Many families of function spaces, such as $L^{p}$ spaces, Besov spaces, amalgam spaces or modulation spaces, exhibit the common feature of being indexed by one parameter (or more) which measures the behavior (regularity, decay properties) of particular functions. All these families of spaces are, or contain, scales or lattices of Banach spaces and constitute special cases of the so-called \emph{partial inner product spaces (\pip s)} that play a central role in analysis, in mathematical physics and in signal processing (e.g. wavelet or Gabor analysis). The basic idea for this structure is that such families should be taken as a whole and operators, bases, frames on them should be defined glo…