6533b836fe1ef96bd12a120c

RESEARCH PRODUCT

A note on banach partial *-algebras

Jean-pierre AntoineCamillo Trapani

subject

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsApproximation propertyGeneral MathematicsInfinite-dimensional vector functionEberlein–Šmulian theoremBanach spaceInterpolation spaceFinite-rank operatorBanach manifoldLp spaceMathematics

description

A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of such objects and display a number of examples, namely LP-like function spaces and spaces of operators on Hilbert scales.

https://doi.org/10.1007/bf03339784