0000000000049193

AUTHOR

Jean-pierre Antoine

showing 43 related works from this author

Partial *-Algebras of Operators in a PIP-Space

2009

The family of operators on a pip-space V is endowed with two, possibly different, partial multiplications, where partial means that the multiplication is not defined for any pair A,B of elements of Op(V) but only for certain couples. The two multiplications, to be called strong and weak, give rise to two different structures that coincide in certain situations. In this chapter we will discuss first the structure of Op(V) as partial *-algebra in the sense of [AIT02] and then the possibility of representing an abstract partial *-algebra into Op(V).

symbols.namesakePure mathematicsComplete latticeHilbert spacesymbolsStructure (category theory)MultiplicationAlgebra over a fieldSpace (mathematics)Dual pairMathematics
researchProduct

Operators on Partial Inner Product Spaces: Towards a Spectral Analysis

2014

Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.

Partial inner product spacesPure mathematicsGeneral MathematicsFOS: Physical sciencesresolventLattice (discrete subgroup)01 natural sciencessymbols.namesakeInner product spaceSettore MAT/05 - Analisi MatematicaPIP-spaceframe multipliers}lattices of Hilbert spacesSpectral analysis0101 mathematicsEigenvalues and eigenvectorsMathematical PhysicsMathematicsResolventframe multipliers010102 general mathematicsSpectrum (functional analysis)Spectral propertiesHilbert spaceMathematical Physics (math-ph)010101 applied mathematicssymbolsspectral properties of symmetric operatorsSpectral theory46Cxx 47A10 47B37
researchProduct

Partial O*-Algebras

2002

This chapter is devoted to the investigation of partial O*-algebras of closable linear operators defined on a common dense domain in a Hilbert space. Section 2.1 introduces of O- and O*-families, O- and O*-vector spaces, partial O*-algebras and O*-algebras. Partial O*-algebras and strong partial O*-algebras are defined by the weak and the strong multiplication. Section 2.2 describes four canonical extensions (closure, full-closure, adjoint, biadjoint) of O*-families and defines the notions of closedness and full-closedness (self-adjointness, integrability) of O*-families in analogy with that of closed (self-adjoint) operators. Section 2.3 deals with two weak bounded commutants M′w and M′qw …

Unbounded operatorPure mathematicssymbols.namesakeSection (category theory)Bounded functionClosure (topology)Hilbert spacesymbolsBicommutantDomain (mathematical analysis)Vector spaceMathematics
researchProduct

Some analytical considerations on two-scale relations

1994

Scaling functions that generate a multiresolution analysis (MRA) satisfy, among other conditions, the so-called «two-scale relation» (TSR). In this paper we discuss a number of properties that follow from the TSR alone, independently of any MRA: position of zeros (mainly for continuous scaling functions), existence theorems (using fixed point and eigenvalue arguments) and orthogonality relation between integer translates. © 1994 Società Italiana di Fisica.

PhysicsMathematics::Functional AnalysisScale (ratio)mathematical methods in physicsFixed pointIntegerProbability theoryOrthogonalityPosition (vector)Computer Science::Computer Vision and Pattern RecognitionQuantum mechanicsApplied mathematicsSettore MAT/07 - Fisica MatematicaScalingEigenvalues and eigenvectorsIl Nuovo Cimento B
researchProduct

Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that

2016

Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure generated by unbounded metric operators in a Hilbert space. To that effect, we consider the notions of similarity and quasi-similarity between operators and explore to what extent they preserve spectral properties. Then we study quasi-Hermitian operators, bounded or not, that is, operators that are quasi-similar to their adjoint and we discuss their application in pseudo-Hermitian quantum mechanics. Finally, we extend the analysis to operators in a partial inner product space (pip-space), in particular the scale of Hilbert space s generated by a single unbounded metric operator.

symbols.namesakeInner product spacePure mathematicsSimilarity (geometry)Operator (computer programming)Bounded functionMetric (mathematics)Hilbert spacesymbolsUnitary operatorHermitian matrix
researchProduct

Commutative Partial O*-Algebras

2002

This chapter is devoted to the integrability of commutative partial O*-algebras. Three notions of weak commutativity, commutativity and strong commutativity of an O*-vector space are defined and investigated. In Section 3.1, we analyze the relation between the integrability of weakly commutative O*-vector space M and the commutativity of the von Neumann algebra (M w ′ )′. In Section 3.2, we study the integrable extensions of partial O*-algebras. In Section 3.3, we describe another explicit example, namely, the partial O*-algebra M[S, T] generated by two weakly commuting symmetric operators S and T defined on a common dense domain in a Hilbert space. In particular, we investigate in detail t…

symbols.namesakePure mathematicsSection (category theory)Von Neumann algebraDomain (ring theory)Hilbert spacesymbolsStructure (category theory)Algebraic extensionSpace (mathematics)Commutative propertyMathematics
researchProduct

Unbounded Linear Operators in Hilbert Spaces

2002

In order to make this monograph self-contained, we summarize in this chapter some basic definitions and results for unbounded linear operators in a Hilbert space. In Section 1.1, we recall the definitions of C*-algebras and von Neumann algebras. In Section 1.2, we define and investigate the notion of closedness, the closure and the adjoint of an unbounded linear operator in a Hilbert space. Section 1.3 is devoted to the Cayley transform approach to the self-adjointness of a symmetric operator. Section 1.4 deals with the self-adjoint extendability of a symmetric operator with help of the deficiency spaces. In Section 1.5, we extend to unbounded self-adjoint operators the spectral theorem and…

Linear mapPure mathematicssymbols.namesakeRepresentation theoremBounded functionPolar decompositionHilbert spacesymbolsCayley transformSpectral theoremMathematics::Spectral TheoryMathematicsFunctional calculus
researchProduct

Corrigendum: Partial inner product spaces, metric operators and generalized hermiticity

2013

n/a

Statistics and ProbabilityInner product spacePure mathematicsModeling and SimulationMetric (mathematics)Mathematical analysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical PhysicsMathematicsJournal of Physics A: Mathematical and Theoretical
researchProduct

Partial *-algebras of closable operators: A review

1996

This paper reviews the theory of partial *-algebras of closable operators in Hilbert space (partial O*-algebras), with some emphasis on partial GW*-algebras. First we discuss the general properties and the various types of partial *-algebras and partial O*-algebras. Then we summarize the representation theory of partial *-algebras, including a generalized Gel’fand-Naimark-Segal construction; the main tool here is the notion of positive sesquilinear form, that we study in some detail (extendability, normality, order structure, …). Finally we turn to automorphisms and derivations of partial O*-algebras, and their mutual relationship. The central theme here is to find conditions that guarante…

Discrete mathematicsPure mathematicsSesquilinear formmedia_common.quotation_subjectHilbert spaceStatistical and Nonlinear PhysicsAutomorphismRepresentation theorysymbols.namesakeOrder structuresymbolsMathematical PhysicsNormalitymedia_commonMathematics
researchProduct

Some Classes of Operators on Partial Inner Product Spaces

2012

Many families of function spaces, such as $L^{p}$ spaces, Besov spaces, amalgam spaces or modulation spaces, exhibit the common feature of being indexed by one parameter (or more) which measures the behavior (regularity, decay properties) of particular functions. All these families of spaces are, or contain, scales or lattices of Banach spaces and constitute special cases of the so-called \emph{partial inner product spaces (\pip s)} that play a central role in analysis, in mathematical physics and in signal processing (e.g. wavelet or Gabor analysis). The basic idea for this structure is that such families should be taken as a whole and operators, bases, frames on them should be defined glo…

Discrete mathematicsNuclear operatorTopological tensor productHilbert spaceoperatorsOperator theoryCompact operator on Hilbert spacesymbols.namesakeSettore MAT/05 - Analisi MatematicasymbolsInterpolation spacePip-spaceBirnbaum–Orlicz spaceLp spaceMathematics
researchProduct

Metric operators, generalized hermiticity and partial inner product spaces

2015

A quasi-Hermitian operator is an operator in a Hilbert space that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure of metric operators, bounded or unbounded, in a Hilbert space. We introduce several generalizations of the notion of similarity between operators and explore to what extent they preserve spectral properties. Next we consider canonical lattices of Hilbert spaces generated by unbounded metric operators. Since such lattices constitute the simplest case of a partial inner product space (PIP space), we can exploit the te…

Discrete mathematicsUnbounded operatorPure mathematicsHermitian adjointFinite-rank operatorOperator theoryCompact operatorOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator
researchProduct

Quasi *-Algebras of Operators in Rigged Hilbert Spaces

2002

In this chapter, we will study families of operators acting on a rigged Hilbert space, with a particular interest in their partial algebraic structure. In Section 10.1 the notion of rigged Hilbert space D[t] ↪ H ↪ D × [t ×] is introduced and some examples are presented. In Section 10.2, we consider the space.L(D, D ×) of all continuous linear maps from D[t] into D × [t ×] and look for conditions under which (L(D, D ×), L +(D)) is a (topological) quasi *-algebra. Moreover the general problem of introducing in L(D, D ×) a partial multiplication is considered. In Section 10.3 representations of abstract quasi *-algebras into quasi*-algebras of operators are studied and the GNS-construction is …

Multiplication (music)Section (fiber bundle)Pure mathematicssymbols.namesakeFréchet spaceAlgebraic structureHilbert spacesymbolsTopological graph theoryRigged Hilbert spaceMathematicsMackey topology
researchProduct

The Partial Inner Product Space Method: A Quick Overview

2010

Many families of function spaces play a central role in analysis, in particular, in signal processing (e.g., wavelet or Gabor analysis). Typical are spaces, Besov spaces, amalgam spaces, or modulation spaces. In all these cases, the parameter indexing the family measures the behavior (regularity, decay properties) of particular functions or operators. It turns out that all these space families are, or contain, scales or lattices of Banach spaces, which are special cases ofpartial inner product spaces(PIP-spaces). In this context, it is often said that such families should be taken as a whole and operators, bases, and frames on them should be defined globally, for the whole family, instead o…

Partial inner product spacesPure mathematicsNuclear operatorPhysicsQC1-999Applied MathematicsTopological tensor productGeneral Physics and AstronomyOperator theorySpace (mathematics)Compact operator on Hilbert spaceSettore MAT/05 - Analisi MatematicaFréchet spaceInterpolation spaceLp spaceMathematicsAdvances in Mathematical Physics
researchProduct

Banach partial *-algebras: an overview

2019

A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.

Pure mathematicsMathematics::Functional AnalysisAlgebra and Number Theorypartial inner product spacesPartial *-algebra Banach partial *-algebra CQ*-algebra partial inner product space operators on Hilbert scale.Partial algebraPartial *-algebraspartial $*$-algebraCQ*-algebraspartial inner product spaceSettore MAT/05 - Analisi Matematica$CQ^*$-algebraBanach partial *-algebrasoperators on Hilbert scaleBanach partial $*$-algebra46J1008A55Analysis47L60Mathematics
researchProduct

Bounded elements in certain topological partial *-algebras

2011

We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.

Pure mathematicsGeneral MathematicsBounded elementMathematics - Rings and AlgebrasPrimary 47L60 Secondary 46H15Topologypartial *-algebrasAlgebraRings and Algebras (math.RA)Settore MAT/05 - Analisi MatematicaBounded functionFOS: Mathematicsbounded elementsSpecial caseInvariant (mathematics)Mathematics
researchProduct

General Theory: Algebraic Point of View

2009

It is convenient to divide our study of pip-spaces into two stages. In the first one, we consider only the algebraic aspects. That is, we explore the structure generated by a linear compatibility relation on a vector space V , as introduced in Section I.2, without any other ingredient. This will lead us to another equivalent formulation, in terms of particular coverings of V by families of subspaces. This first approach, purely algebraic, is the subject matter of the present chapter. Then, in a second stage, we introduce topologies on the so-called assaying subspaces \(\{V_r \}\). Indeed, as already mentioned in Section I.2, assuming the partial inner product to be nondegenerate implies tha…

Section (fiber bundle)Discrete mathematicsAlgebraic cycleProduct (mathematics)Real algebraic geometryAlgebraic extensionAlgebraic closureMathematicsSingular point of an algebraic varietyDual pair
researchProduct

Continuous *-homomorphisms of Banach Partial *-algebras

2007

We continue the study of Banach partial *-algebras, in particular the question of the interplay between *-homomorphisms and biweights. Two special types of objects are introduced, namely, relatively bounded biweights and Banach partial *-algebras satisfying a certain Condition (S), which behave in a more regular way. We also present a systematic construction of Banach partial *-algebras of this type and exhibit several examples.

AlgebraMathematics::Functional AnalysisGeneral MathematicsBounded functionHomomorphismType (model theory)C0-semigroupMathematicsMediterranean Journal of Mathematics
researchProduct

Reproducing pairs of measurable functions

2017

We analyze the notion of reproducing pair of weakly measurable functions, which generalizes that of continuous frame. We show, in particular, that each reproducing pair generates two Hilbert spaces, conjugate dual to each other. Several examples, both discrete and continuous, are presented.

continuous framesPure mathematicsPartial differential equationMeasurable functionApplied Mathematics010102 general mathematicsBanach spaceupper and lower semi-frames01 natural sciencesDual (category theory)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisContinuous frameReproducing pairInner product spaceSettore MAT/05 - Analisi MatematicaReproducing pairsUpper and lower semi-frameFOS: Mathematics0101 mathematics41A99 46Bxx 46ExxMathematics
researchProduct

Operators on PIP-Spaces and Indexed PIP-Spaces

2009

As already mentioned, the basic idea of pip-spaces is that vectors should not be considered individually, but only in terms of the subspaces V r (r Є F), the building blocks of the structure. Correspondingly, an operator on a pipspace should be defined in terms of assaying subspaces only, with the proviso that only continuous or bounded operators are allowed. Thus an operator is a coherent collection of continuous operators. We recall that in a nondegenerate pip-space, every assaying subspace V r carries its Mackey topology \(\tau (V_r , V \bar{r})\) and thus its dual is \(V \bar{r}\). This applies in particular to \(V^{\#}\) and V itself. For simplicity, a continuous linear map between two…

CombinatoricsLinear mapsymbols.namesakeOperator (computer programming)Unitary representationBounded functionHilbert spacesymbolsProduct topologyLinear subspaceMathematicsMackey topology
researchProduct

Well-behaved *-Representations

2002

This chapter is devoted to the study of the so-called well-behaved *-representations of (partial) *-algebras. Actually one may define are two notions of well-behavedness and we will discuss the relation between them. These notions are introduced in order to avoid pathologies which may arise for general *-representations and to select “nice” representations, which may have a richer theory. In Section 8.1, we construct a class {π p } of *-representations, starting from an unbounded C*-seminorm p and we define nice *-representations in {π p }, called well-behaved. We also characterize their existence. In Section 8.2, we introduce the well-behaved *-representations associated with a compatible …

Section (fiber bundle)Class (set theory)symbols.namesakePure mathematicsHilbert spacesymbolsOrder (ring theory)Linear spanApproximate identityAction (physics)Maximal elementMathematics
researchProduct

Applications in Mathematical Physics

2009

It turns out that pip-space methods have many applications in physics, although they are seldom mentioned as such. To draw on a literary analogy, like Moliere’s Monsieur Jourdain speaking in prose without knowing so, many authors have been using pip-space language without realizing it. In particular, chains or lattices of Hilbert spaces are quite common in many fields of mathematical physics. Some of these applications will be discussed at length in this chapter. To mention a few examples: quantum mechanics, in particular singular interactions (Section 7.1.3), scattering theory (Section 7.2), quantum field theory (Section 7.3), representations of Lie groups (Section 7.4), etc.

symbols.namesakeUnitary representationApplied physicsSection (typography)Hilbert spacesymbolsAnalogyLie groupScattering theoryQuantum field theoryMathematical physics
researchProduct

PIP-Spaces and Signal Processing

2009

Contemporary signal processing makes an extensive use of function spaces, always with the aim of getting a precise control on smoothness and decay properties of functions. In this chapter, we will discuss several classes of such function spaces that have found interesting applications, namely, mixed-norm spaces, amalgam spaces, modulation spaces, or Besov spaces. It turns out that all those spaces come in families indexed by one or more parameters, that specify, for instance, the local behavior or the asymptotic properties. In general, a single space, taken alone, does not have an intrinsic meaning, it is the family as a whole that does, which brings us to the very topic of this volume. In …

AlgebraModulation spaceSmoothnesssymbols.namesakeClass (set theory)Function spaceComputer scienceBergman spaceHilbert spacesymbolsBesov spaceSpace (mathematics)
researchProduct

Coherent states: a contemporary panorama

2012

Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…

Statistics and ProbabilityPhysicsPure mathematics010308 nuclear & particles physicsMathematics::History and Overview[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]General Physics and AstronomyStatistical and Nonlinear PhysicsQuantum entanglement01 natural sciencesPhysics::History of PhysicsGroup representationQuantization (physics)Theoretical physicsQuantum state[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Modeling and Simulation0103 physical sciencesCoherent statesQuantum gravityQuantum information010306 general physicsMathematical PhysicsComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

Tomita—Takesaki Theory in Partial O*-Algebras

2002

This chapter is devoted to the development of the Tomita-Takesaki theory in partial O*-algebras. In Section 5.1, we introduce and investigate the notion of cyclic generalized vectors for a partial O*-algebra, generalizing that of cyclic vectors, and its commutants. Section 5.2 introduces the notion of a cyclic and separating system (M, λ, λ c ), which consists of a partial O*-algebra M, a cyclic generalized vector λ for M and the commutant λ c of λ. A cyclic and separating system (M, λ, λ c ) determines the cyclic and separating system ((M w ′ )′, λ cc , (λ cc ) c ) of the von Neumann algebra (M w ′ )′, and this makes it possible to develop the Tornita-Takesaki theory. Then λ can be extende…

Section (fiber bundle)Physicssymbols.namesakePure mathematicsVon Neumann algebraGroup (mathematics)Polar decompositionsymbolsTomita–Takesaki theoryAutomorphismCentralizer and normalizerLinear span
researchProduct

Examples of Indexed PIP-Spaces

2009

This chapter is devoted to a detailed analysis of various concrete examples of pip-spaces. We will explore sequence spaces, spaces of measurable functions, and spaces of analytic functions. Some cases have already been presented in Chapters 1 and 2. We will of course not repeat these discussions, except very briefly. In addition, various functional spaces are of great interest in signal processing (amalgam spaces, modulation spaces, Besov spaces, coorbit spaces). These will be studied systematically in a separate chapter (Chapter 8).

AlgebraSequencesymbols.namesakeModulation spaceMeasurable functionComputer scienceBergman spaceBanach spacesymbolsHilbert spaceHardy spaceSequence space
researchProduct

A note on banach partial *-algebras

2006

A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of such objects and display a number of examples, namely LP-like function spaces and spaces of operators on Hilbert scales.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsApproximation propertyGeneral MathematicsInfinite-dimensional vector functionEberlein–Šmulian theoremBanach spaceInterpolation spaceFinite-rank operatorBanach manifoldLp spaceMathematicsMediterranean Journal of Mathematics
researchProduct

General Theory: Topological Aspects

2009

In Chapter 1, we have analyzed the structure of pip-spaces from the algebraic point of view only, (i.e., the compatibility relation). Here we will discuss primarily the topological structure given by the partial inner product itself. The aim is to tighten the definitions so as to eliminate as many pathologies as possible. The picture that emerges is reassuringly simple: Only two types of pip-spaces seem sufficiently regular to have any practical use, namely lattices of Hilbert spaces (LHS) or Banach spaces (LBS), that we have introduced briefly in the Introduction. Our standard reference on locally convex topological vector spaces (LCS) will be the textbook of Kothe [Kot69]. In addition, fo…

symbols.namesakeWeak topologyLocally convex topological vector spaceBanach spaceHilbert spacesymbolsStructure (category theory)TopologyStrong topology (polar topology)Mackey topologyMathematicsDual pair
researchProduct

Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces

2015

Pseudo-Hermitian quantum mechanics (QM) is a recent, unconventional, approach to QM, based on the use of non-self-adjoint Hamiltonians, whose self-adjointness can be restored by changing the ambient Hilbert space, via a so-called metric operator. The PT-symmetric Hamiltonians are usually pseudo-Hermitian operators, a term introduced a long time ago by Dieudonné for characterizing those bounded operators A that satisfy a relation of the form GA = A G, where G is a metric operator, that is, a strictly positive self-adjoint operator. This chapter explores further the structure of unbounded metric operators, in particular, their incidence on similarity. It examines the notion of similarity betw…

Discrete mathematicsUnbounded operatorVon Neumann's theoremPure mathematicsMetric operators Hermiticity Pip-spacesSettore MAT/05 - Analisi MatematicaHermitian adjointNuclear operatorOperator theoryOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator
researchProduct

On the regularity of the partial {$O\sp *$}-algebras generated by a closed symmetric operator

1992

Let be given a dense domain D in a Hilbert space and a closed symmetric operator T with domain containing D. Then the restriction of T to D generates (algebraically) two partial *-algebras of closable operators (called weak and strong), possibly nonabelian and nonassociative. We characterize them completely. In particular, we examine under what conditions they are regular, that is, consist of polynomials only, and standard. Simple differential operators provide concrete examples of all the pathologies allowed by the abstract theory.

Discrete mathematicsPure mathematicsGeneral MathematicsHilbert spaceOperator theoryDifferential operatorAbstract theoryDomain (mathematical analysis)symbols.namesakeOperator algebraSimple (abstract algebra)symbolsMathematicsSymmetric operatorPublications of the Research Institute for Mathematical Sciences
researchProduct

*-Representations of Partial *-Algebras

2002

This chapter is devoted to *-representations of partial *-algebras. We introduce in Section 7.1 the notions of closed, fully closed, self-adjoint and integrable *-representations. In Section 7.2, the intertwining spaces of two *-representations of a partial *-algebra are defined and investigated, and using them we define the induced extensions of a *-representation. Section 7.3 deals with vector representations for a *-representation of a partial *-algebra, which are the appropriate generalization to a *-representation of the notion of generalized vectors described in Chapter 5. Regular and singular vector representations are defined and characterized by the properties of the commutant, and…

Section (fiber bundle)symbols.namesakePure mathematicsClosure (mathematics)Hilbert spacesymbolsNest algebraAutomorphismCentralizer and normalizerProjection (linear algebra)Domain (mathematical analysis)Mathematics
researchProduct

Biweights on Partial *-Algebras

2000

This chapter is devoted to the systematic investigation of biweights on partial *-algebras. These are a generalization of invariant positive sesquilinear forms that still allows a Gel’fand—Naĭmark—Segal (GNS) construction of representations. In Section 9.1, we apply this GNS construction for biweights and we obtain *-representations and cyclic vector representations of partial *-algebras, and we give some examples of biweights. Section 9.2 is devoted to the investigation of the Radon—Nikodým theorem and the Lebesgue decomposition theorem for biweights on partial *-algebras. In Section 9.3, we define regular and singular biweights on partial *-algebras and we characterize them with help of t…

Pure mathematicsDirect sumMathematics::Operator AlgebrasApplied MathematicsHilbert spacePartial *-algebrasLebesgue integrationLinear spansymbols.namesakeadmissible biweightsbiweightsSchwartz spaceBounded functionsymbolsGNS constructionInvariant (mathematics)weightsapproximately admissible biweightsAnalysisMathematicsDecomposition theoremJournal of Mathematical Analysis and Applications
researchProduct

Partial inner product spaces: Some categorical aspects

2012

We make explicit in terms of categories a number of statements from the theory of partial inner product spaces (PIP spaces) and operators on them. In particular, we construct sheaves and cosheaves of operators on certain PIP spaces of practical interest.

Pure mathematicsArticle SubjectApplied MathematicsPhysicsQC1-999categoriesGeneral Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)QC20Inner product spaceSettore MAT/05 - Analisi MatematicaMathematics::Category Theory46Cxx 18BxxPip-spaceConstruct (philosophy)Categorical variableMathematical PhysicsMathematics
researchProduct

Topologies on Partial O*-Algebras

2002

In this chapter, we introduce some basic locally convex topologies on partial O*-algebras and we establish general properties of these topologies. In Section 4.1, we compare the graph topologies induced by different O-families on the same domain (and the corresponding families of bounded subsets). In the case where the domain D M of an O-family M is a (quasi-) Frechet space, the structure of bounded subsets in D M can be described in a rather explicit way. Section 4.2 and Section 4.3 are devoted to the topologization of (partial) O*-algebras. Section 4.2 deals with locally convex topologies, the so-called uniform topologies τ u , τ u , τ * u and quasiuniform topologies τ qu , and Section 4.…

Physicssymbols.namesakePure mathematicsFréchet spaceBounded functionHilbert spacesymbolsTopological graph theoryDirect limitOperator normCauchy sequenceNormed vector space
researchProduct

Partial inner product spaces, metric operators and generalized hermiticity

2013

Motivated by the recent developments of pseudo-hermitian quantum mechanics, we analyze the structure of unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP space). Next, we introduce several generalizations of the notion of similarity between operators and explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, we reformulate the notion of pseudo-hermitian operators in the preceding formalism.

Statistics and ProbabilityPure mathematicsQuantum PhysicsSpectral propertiesHilbert spaceFOS: Physical sciencesGeneral Physics and Astronomymetric operatorStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Formalism (philosophy of mathematics)symbols.namesakeInner product spaceOperator (computer programming)pip-spacesSettore MAT/05 - Analisi MatematicaModeling and SimulationLattice (order)symbolsgeneralized hermiticityQuantum Physics (quant-ph)Mathematical PhysicsMathematics
researchProduct

Refinements of PIP-Spaces

2009

We have seen in Section 1.5, that the compatibility relation underlying a pip-space may always be coarsened, but not refined in general. There is an exception, however, namely the case of a scale of Hilbert spaces and analogous structures. We shall describe it in this section.

Unbounded operatorPure mathematicssymbols.namesakeScale (ratio)Section (archaeology)Compatibility relationHilbert spacesymbolsSpectral theoremMathematics
researchProduct

Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues

2022

Given a self-adjoint operator A in a Hilbert space H, we analyze its spectral behavior when it is expressed in terms of generalized eigenvectors. Using the formalism of Gel’fand distribution bases, we explore the conditions for the generalized eigenspaces to be one-dimensional, i.e., for A to have a simple spectrum.

rigged Hilbert space; generalized eigenvectors; simple spectrumrigged Hilbert spaceSettore MAT/05 - Analisi MatematicaGeneral Mathematicsgeneralized eigenvectorComputer Science (miscellaneous)simple spectrumEngineering (miscellaneous)Settore MAT/07 - Fisica MatematicaMathematics; Volume 11; Issue 1; Pages: 195
researchProduct

O* - Dynamical Systems and * - Derivations of Unbounded Operator Algebras

1999

A spatial theory is developed for * - derivations of an algebra of unbounded operators, in terms of the concept of O*-dynamical systems. Three notions of spatiality emerge, depending on the nature of the corresponding generator. Special emphasis is put on O*-dynamical systems generated by one-parameter groups of *-automorphisms and their *-derivations.

AlgebraUnbounded operatorPure mathematicsSpatial theoryDynamical systems theoryGeneral MathematicsAlgebra over a fieldGenerator (mathematics)MathematicsMathematische Nachrichten
researchProduct

Wavelet-like orthonormal bases for the lowest Landau level

1994

As a first step in the description of a two-dimensional electron gas in a magnetic field, such as encountered in the fractional quantum Hall effect, we discuss a general procedure for constructing an orthonormal basis for the lowest Landau level, starting from an arbitrary orthonormal basis in L2(R). We discuss in detail two relevant examples coming from wavelet analysis, the Haar and the Littlewood-Paley bases.

PhysicsMathematics::Functional AnalysisGeneral Physics and AstronomyStatistical and Nonlinear PhysicsLandau quantizationMagnetic fieldGeneralized Fourier seriesWaveletFractional quantum Hall effectOrthonormal basisQuantum field theorySettore MAT/07 - Fisica MatematicaMutually unbiased basesMathematical PhysicsMathematical physics
researchProduct

Beyond frames: Semi-frames and reproducing pairs

2017

Frames are nowadays a standard tool in many areas of mathematics, physics, and engineering. However, there are situations where it is difficult, even impossible, to design an appropriate frame. Thus there is room for generalizations, obtained by relaxing the constraints. A first case is that of semi-frames, in which one frame bound only is satisfied. Accordingly, one has to distinguish between upper and lower semi-frames. We will summarize this construction. Even more, one may get rid of both bounds, but then one needs two basic functions and one is led to the notion of reproducing pair. It turns out that every reproducing pair generates two Hilbert spaces, conjugate dual of each other. We …

AlgebraInner product spacesymbols.namesakeAreas of mathematicsLattice (order)Hilbert spacesymbolsRigged Hilbert spaceLp space
researchProduct

Fully representable and*-semisimple topological partial*-algebras

2012

We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …

Discrete mathematics*-semisimple partial *-algebrasPure mathematicsbounded elements.*-semisimple partial *-algebraGeneral MathematicsMathematics - Rings and AlgebrasTopology08A55 46K05 46K10 47L60bounded elements}topological partial *-algebrasRings and Algebras (math.RA)Settore MAT/05 - Analisi MatematicaBounded functionFOS: MathematicsInvariant (mathematics)topological partial *-algebraMathematicsStudia Mathematica
researchProduct

PIP-Space Valued Reproducing Pairs of Measurable Functions

2019

We analyze the notion of reproducing pairs of weakly measurable functions, a generalization of continuous frames. The aim is to represent elements of an abstract space Y as superpositions of weakly measurable functions belonging to a space Z : = Z ( X , μ ), where ( X , μ ) is a measure space. Three cases are envisaged, with increasing generality: (i) Y and Z are both Hilbert spaces; (ii) Y is a Hilbert space, but Z is a pip-space; (iii) Y and Z are both pip-spaces. It is shown, in particular, that the requirement that a pair of measurable functions be reproducing strongly constrains the structure of the initial space Y. Examples are presented for each case.

Pure mathematicspartial inner product spacesMeasurable functionLogicGeneralizationreproducing pairs; continuous frames; upper and lower semi-frames; partial inner product spacesStructure (category theory)upper and lower semi-framecontinuous frameAbstract spaceSpace (mathematics)01 natural sciencesMeasure (mathematics)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciences0101 mathematics010306 general physicsreproducing pairMathematical PhysicsMathematicscontinuous framesAlgebra and Number Theorylcsh:Mathematics010102 general mathematicsHilbert spaceupper and lower semi-frameslcsh:QA1-939reproducing pairssymbolsGeometry and TopologyAnalysis
researchProduct

Spectral Properties of Partial *-Algebras

2010

We continue our study of topological partial *algebras focusing our attention to some basic spectral properties. The special case of partial *-algebras of operators is examined first, in order to find sufficient hints for the study of the abstract case. The outcome consists in the selection of a class of topological partial *-algebras (partial GC*-algebras) that behave well from the spectral point of view and that allow, under certain conditions, a faithful realization as a partial O*-algebra.

Class (set theory)Pure mathematicsSelection (relational algebra)General MathematicsSpectral propertiesOrder (ring theory)Outcome (probability)AlgebraSpectral propertietopological partial *-algebrasSettore MAT/05 - Analisi MatematicaPoint (geometry)Special caseRealization (systems)MathematicsMediterranean Journal of Mathematics
researchProduct

TOPOLOGICAL PARTIAL *-ALGEBRAS: BASIC PROPERTIES AND EXAMPLES

1999

Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).

Connected spaceTopological algebraTopological tensor productFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Topological spaceTopologyTopological vector spaceHomeomorphismSettore MAT/05 - Analisi MatematicaLocally convex topological vector spaceMathematical PhysicTopological ringSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsReviews in Mathematical Physics
researchProduct