0000000000049193
AUTHOR
Jean-pierre Antoine
Partial *-Algebras of Operators in a PIP-Space
The family of operators on a pip-space V is endowed with two, possibly different, partial multiplications, where partial means that the multiplication is not defined for any pair A,B of elements of Op(V) but only for certain couples. The two multiplications, to be called strong and weak, give rise to two different structures that coincide in certain situations. In this chapter we will discuss first the structure of Op(V) as partial *-algebra in the sense of [AIT02] and then the possibility of representing an abstract partial *-algebra into Op(V).
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
Partial O*-Algebras
This chapter is devoted to the investigation of partial O*-algebras of closable linear operators defined on a common dense domain in a Hilbert space. Section 2.1 introduces of O- and O*-families, O- and O*-vector spaces, partial O*-algebras and O*-algebras. Partial O*-algebras and strong partial O*-algebras are defined by the weak and the strong multiplication. Section 2.2 describes four canonical extensions (closure, full-closure, adjoint, biadjoint) of O*-families and defines the notions of closedness and full-closedness (self-adjointness, integrability) of O*-families in analogy with that of closed (self-adjoint) operators. Section 2.3 deals with two weak bounded commutants M′w and M′qw …
Some analytical considerations on two-scale relations
Scaling functions that generate a multiresolution analysis (MRA) satisfy, among other conditions, the so-called «two-scale relation» (TSR). In this paper we discuss a number of properties that follow from the TSR alone, independently of any MRA: position of zeros (mainly for continuous scaling functions), existence theorems (using fixed point and eigenvalue arguments) and orthogonality relation between integer translates. © 1994 Società Italiana di Fisica.
Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that
Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure generated by unbounded metric operators in a Hilbert space. To that effect, we consider the notions of similarity and quasi-similarity between operators and explore to what extent they preserve spectral properties. Then we study quasi-Hermitian operators, bounded or not, that is, operators that are quasi-similar to their adjoint and we discuss their application in pseudo-Hermitian quantum mechanics. Finally, we extend the analysis to operators in a partial inner product space (pip-space), in particular the scale of Hilbert space s generated by a single unbounded metric operator.
Commutative Partial O*-Algebras
This chapter is devoted to the integrability of commutative partial O*-algebras. Three notions of weak commutativity, commutativity and strong commutativity of an O*-vector space are defined and investigated. In Section 3.1, we analyze the relation between the integrability of weakly commutative O*-vector space M and the commutativity of the von Neumann algebra (M w ′ )′. In Section 3.2, we study the integrable extensions of partial O*-algebras. In Section 3.3, we describe another explicit example, namely, the partial O*-algebra M[S, T] generated by two weakly commuting symmetric operators S and T defined on a common dense domain in a Hilbert space. In particular, we investigate in detail t…
Unbounded Linear Operators in Hilbert Spaces
In order to make this monograph self-contained, we summarize in this chapter some basic definitions and results for unbounded linear operators in a Hilbert space. In Section 1.1, we recall the definitions of C*-algebras and von Neumann algebras. In Section 1.2, we define and investigate the notion of closedness, the closure and the adjoint of an unbounded linear operator in a Hilbert space. Section 1.3 is devoted to the Cayley transform approach to the self-adjointness of a symmetric operator. Section 1.4 deals with the self-adjoint extendability of a symmetric operator with help of the deficiency spaces. In Section 1.5, we extend to unbounded self-adjoint operators the spectral theorem and…
Corrigendum: Partial inner product spaces, metric operators and generalized hermiticity
n/a
Partial *-algebras of closable operators: A review
This paper reviews the theory of partial *-algebras of closable operators in Hilbert space (partial O*-algebras), with some emphasis on partial GW*-algebras. First we discuss the general properties and the various types of partial *-algebras and partial O*-algebras. Then we summarize the representation theory of partial *-algebras, including a generalized Gel’fand-Naimark-Segal construction; the main tool here is the notion of positive sesquilinear form, that we study in some detail (extendability, normality, order structure, …). Finally we turn to automorphisms and derivations of partial O*-algebras, and their mutual relationship. The central theme here is to find conditions that guarante…
Some Classes of Operators on Partial Inner Product Spaces
Many families of function spaces, such as $L^{p}$ spaces, Besov spaces, amalgam spaces or modulation spaces, exhibit the common feature of being indexed by one parameter (or more) which measures the behavior (regularity, decay properties) of particular functions. All these families of spaces are, or contain, scales or lattices of Banach spaces and constitute special cases of the so-called \emph{partial inner product spaces (\pip s)} that play a central role in analysis, in mathematical physics and in signal processing (e.g. wavelet or Gabor analysis). The basic idea for this structure is that such families should be taken as a whole and operators, bases, frames on them should be defined glo…
Metric operators, generalized hermiticity and partial inner product spaces
A quasi-Hermitian operator is an operator in a Hilbert space that is similar to its adjoint in some sense, via a metric operator, i.e., a strictly positive self-adjoint operator. Motivated by the recent developments of pseudo-Hermitian quantum mechanics, we analyze the structure of metric operators, bounded or unbounded, in a Hilbert space. We introduce several generalizations of the notion of similarity between operators and explore to what extent they preserve spectral properties. Next we consider canonical lattices of Hilbert spaces generated by unbounded metric operators. Since such lattices constitute the simplest case of a partial inner product space (PIP space), we can exploit the te…
Quasi *-Algebras of Operators in Rigged Hilbert Spaces
In this chapter, we will study families of operators acting on a rigged Hilbert space, with a particular interest in their partial algebraic structure. In Section 10.1 the notion of rigged Hilbert space D[t] ↪ H ↪ D × [t ×] is introduced and some examples are presented. In Section 10.2, we consider the space.L(D, D ×) of all continuous linear maps from D[t] into D × [t ×] and look for conditions under which (L(D, D ×), L +(D)) is a (topological) quasi *-algebra. Moreover the general problem of introducing in L(D, D ×) a partial multiplication is considered. In Section 10.3 representations of abstract quasi *-algebras into quasi*-algebras of operators are studied and the GNS-construction is …
The Partial Inner Product Space Method: A Quick Overview
Many families of function spaces play a central role in analysis, in particular, in signal processing (e.g., wavelet or Gabor analysis). Typical are spaces, Besov spaces, amalgam spaces, or modulation spaces. In all these cases, the parameter indexing the family measures the behavior (regularity, decay properties) of particular functions or operators. It turns out that all these space families are, or contain, scales or lattices of Banach spaces, which are special cases ofpartial inner product spaces(PIP-spaces). In this context, it is often said that such families should be taken as a whole and operators, bases, and frames on them should be defined globally, for the whole family, instead o…
Banach partial *-algebras: an overview
A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.
Bounded elements in certain topological partial *-algebras
We continue our study of topological partial *algebras, focusing our attention to the interplay between the various partial multiplications. The special case of partial *-algebras of operators is examined first, in particular the link between the strong and the weak multiplications, on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis is extended to abstract topological partial *algebras, emphasizing the crucial role played by appropriate bounded elements, called $\M$-bounded. Finally, some remarks are made concerning representations in terms of the so-called partial GC*-algebras of operators.
General Theory: Algebraic Point of View
It is convenient to divide our study of pip-spaces into two stages. In the first one, we consider only the algebraic aspects. That is, we explore the structure generated by a linear compatibility relation on a vector space V , as introduced in Section I.2, without any other ingredient. This will lead us to another equivalent formulation, in terms of particular coverings of V by families of subspaces. This first approach, purely algebraic, is the subject matter of the present chapter. Then, in a second stage, we introduce topologies on the so-called assaying subspaces \(\{V_r \}\). Indeed, as already mentioned in Section I.2, assuming the partial inner product to be nondegenerate implies tha…
Continuous *-homomorphisms of Banach Partial *-algebras
We continue the study of Banach partial *-algebras, in particular the question of the interplay between *-homomorphisms and biweights. Two special types of objects are introduced, namely, relatively bounded biweights and Banach partial *-algebras satisfying a certain Condition (S), which behave in a more regular way. We also present a systematic construction of Banach partial *-algebras of this type and exhibit several examples.
Reproducing pairs of measurable functions
We analyze the notion of reproducing pair of weakly measurable functions, which generalizes that of continuous frame. We show, in particular, that each reproducing pair generates two Hilbert spaces, conjugate dual to each other. Several examples, both discrete and continuous, are presented.
Operators on PIP-Spaces and Indexed PIP-Spaces
As already mentioned, the basic idea of pip-spaces is that vectors should not be considered individually, but only in terms of the subspaces V r (r Є F), the building blocks of the structure. Correspondingly, an operator on a pipspace should be defined in terms of assaying subspaces only, with the proviso that only continuous or bounded operators are allowed. Thus an operator is a coherent collection of continuous operators. We recall that in a nondegenerate pip-space, every assaying subspace V r carries its Mackey topology \(\tau (V_r , V \bar{r})\) and thus its dual is \(V \bar{r}\). This applies in particular to \(V^{\#}\) and V itself. For simplicity, a continuous linear map between two…
Well-behaved *-Representations
This chapter is devoted to the study of the so-called well-behaved *-representations of (partial) *-algebras. Actually one may define are two notions of well-behavedness and we will discuss the relation between them. These notions are introduced in order to avoid pathologies which may arise for general *-representations and to select “nice” representations, which may have a richer theory. In Section 8.1, we construct a class {π p } of *-representations, starting from an unbounded C*-seminorm p and we define nice *-representations in {π p }, called well-behaved. We also characterize their existence. In Section 8.2, we introduce the well-behaved *-representations associated with a compatible …
Applications in Mathematical Physics
It turns out that pip-space methods have many applications in physics, although they are seldom mentioned as such. To draw on a literary analogy, like Moliere’s Monsieur Jourdain speaking in prose without knowing so, many authors have been using pip-space language without realizing it. In particular, chains or lattices of Hilbert spaces are quite common in many fields of mathematical physics. Some of these applications will be discussed at length in this chapter. To mention a few examples: quantum mechanics, in particular singular interactions (Section 7.1.3), scattering theory (Section 7.2), quantum field theory (Section 7.3), representations of Lie groups (Section 7.4), etc.
PIP-Spaces and Signal Processing
Contemporary signal processing makes an extensive use of function spaces, always with the aim of getting a precise control on smoothness and decay properties of functions. In this chapter, we will discuss several classes of such function spaces that have found interesting applications, namely, mixed-norm spaces, amalgam spaces, modulation spaces, or Besov spaces. It turns out that all those spaces come in families indexed by one or more parameters, that specify, for instance, the local behavior or the asymptotic properties. In general, a single space, taken alone, does not have an intrinsic meaning, it is the family as a whole that does, which brings us to the very topic of this volume. In …
Coherent states: a contemporary panorama
Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…
Tomita—Takesaki Theory in Partial O*-Algebras
This chapter is devoted to the development of the Tomita-Takesaki theory in partial O*-algebras. In Section 5.1, we introduce and investigate the notion of cyclic generalized vectors for a partial O*-algebra, generalizing that of cyclic vectors, and its commutants. Section 5.2 introduces the notion of a cyclic and separating system (M, λ, λ c ), which consists of a partial O*-algebra M, a cyclic generalized vector λ for M and the commutant λ c of λ. A cyclic and separating system (M, λ, λ c ) determines the cyclic and separating system ((M w ′ )′, λ cc , (λ cc ) c ) of the von Neumann algebra (M w ′ )′, and this makes it possible to develop the Tornita-Takesaki theory. Then λ can be extende…
Examples of Indexed PIP-Spaces
This chapter is devoted to a detailed analysis of various concrete examples of pip-spaces. We will explore sequence spaces, spaces of measurable functions, and spaces of analytic functions. Some cases have already been presented in Chapters 1 and 2. We will of course not repeat these discussions, except very briefly. In addition, various functional spaces are of great interest in signal processing (amalgam spaces, modulation spaces, Besov spaces, coorbit spaces). These will be studied systematically in a separate chapter (Chapter 8).
A note on banach partial *-algebras
A Banach partial *-algebra is a locally convex partial *-algebra whose total space is a Banach space. A Banach partial *-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of such objects and display a number of examples, namely LP-like function spaces and spaces of operators on Hilbert scales.
General Theory: Topological Aspects
In Chapter 1, we have analyzed the structure of pip-spaces from the algebraic point of view only, (i.e., the compatibility relation). Here we will discuss primarily the topological structure given by the partial inner product itself. The aim is to tighten the definitions so as to eliminate as many pathologies as possible. The picture that emerges is reassuringly simple: Only two types of pip-spaces seem sufficiently regular to have any practical use, namely lattices of Hilbert spaces (LHS) or Banach spaces (LBS), that we have introduced briefly in the Introduction. Our standard reference on locally convex topological vector spaces (LCS) will be the textbook of Kothe [Kot69]. In addition, fo…
Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces
Pseudo-Hermitian quantum mechanics (QM) is a recent, unconventional, approach to QM, based on the use of non-self-adjoint Hamiltonians, whose self-adjointness can be restored by changing the ambient Hilbert space, via a so-called metric operator. The PT-symmetric Hamiltonians are usually pseudo-Hermitian operators, a term introduced a long time ago by Dieudonné for characterizing those bounded operators A that satisfy a relation of the form GA = A G, where G is a metric operator, that is, a strictly positive self-adjoint operator. This chapter explores further the structure of unbounded metric operators, in particular, their incidence on similarity. It examines the notion of similarity betw…
On the regularity of the partial {$O\sp *$}-algebras generated by a closed symmetric operator
Let be given a dense domain D in a Hilbert space and a closed symmetric operator T with domain containing D. Then the restriction of T to D generates (algebraically) two partial *-algebras of closable operators (called weak and strong), possibly nonabelian and nonassociative. We characterize them completely. In particular, we examine under what conditions they are regular, that is, consist of polynomials only, and standard. Simple differential operators provide concrete examples of all the pathologies allowed by the abstract theory.
*-Representations of Partial *-Algebras
This chapter is devoted to *-representations of partial *-algebras. We introduce in Section 7.1 the notions of closed, fully closed, self-adjoint and integrable *-representations. In Section 7.2, the intertwining spaces of two *-representations of a partial *-algebra are defined and investigated, and using them we define the induced extensions of a *-representation. Section 7.3 deals with vector representations for a *-representation of a partial *-algebra, which are the appropriate generalization to a *-representation of the notion of generalized vectors described in Chapter 5. Regular and singular vector representations are defined and characterized by the properties of the commutant, and…
Biweights on Partial *-Algebras
This chapter is devoted to the systematic investigation of biweights on partial *-algebras. These are a generalization of invariant positive sesquilinear forms that still allows a Gel’fand—Naĭmark—Segal (GNS) construction of representations. In Section 9.1, we apply this GNS construction for biweights and we obtain *-representations and cyclic vector representations of partial *-algebras, and we give some examples of biweights. Section 9.2 is devoted to the investigation of the Radon—Nikodým theorem and the Lebesgue decomposition theorem for biweights on partial *-algebras. In Section 9.3, we define regular and singular biweights on partial *-algebras and we characterize them with help of t…
Partial inner product spaces: Some categorical aspects
We make explicit in terms of categories a number of statements from the theory of partial inner product spaces (PIP spaces) and operators on them. In particular, we construct sheaves and cosheaves of operators on certain PIP spaces of practical interest.
Topologies on Partial O*-Algebras
In this chapter, we introduce some basic locally convex topologies on partial O*-algebras and we establish general properties of these topologies. In Section 4.1, we compare the graph topologies induced by different O-families on the same domain (and the corresponding families of bounded subsets). In the case where the domain D M of an O-family M is a (quasi-) Frechet space, the structure of bounded subsets in D M can be described in a rather explicit way. Section 4.2 and Section 4.3 are devoted to the topologization of (partial) O*-algebras. Section 4.2 deals with locally convex topologies, the so-called uniform topologies τ u , τ u , τ * u and quasiuniform topologies τ qu , and Section 4.…
Partial inner product spaces, metric operators and generalized hermiticity
Motivated by the recent developments of pseudo-hermitian quantum mechanics, we analyze the structure of unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP space). Next, we introduce several generalizations of the notion of similarity between operators and explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, we reformulate the notion of pseudo-hermitian operators in the preceding formalism.
Refinements of PIP-Spaces
We have seen in Section 1.5, that the compatibility relation underlying a pip-space may always be coarsened, but not refined in general. There is an exception, however, namely the case of a scale of Hilbert spaces and analogous structures. We shall describe it in this section.
Operators in Rigged Hilbert Spaces, Gel’fand Bases and Generalized Eigenvalues
Given a self-adjoint operator A in a Hilbert space H, we analyze its spectral behavior when it is expressed in terms of generalized eigenvectors. Using the formalism of Gel’fand distribution bases, we explore the conditions for the generalized eigenspaces to be one-dimensional, i.e., for A to have a simple spectrum.
O* - Dynamical Systems and * - Derivations of Unbounded Operator Algebras
A spatial theory is developed for * - derivations of an algebra of unbounded operators, in terms of the concept of O*-dynamical systems. Three notions of spatiality emerge, depending on the nature of the corresponding generator. Special emphasis is put on O*-dynamical systems generated by one-parameter groups of *-automorphisms and their *-derivations.
Wavelet-like orthonormal bases for the lowest Landau level
As a first step in the description of a two-dimensional electron gas in a magnetic field, such as encountered in the fractional quantum Hall effect, we discuss a general procedure for constructing an orthonormal basis for the lowest Landau level, starting from an arbitrary orthonormal basis in L2(R). We discuss in detail two relevant examples coming from wavelet analysis, the Haar and the Littlewood-Paley bases.
Beyond frames: Semi-frames and reproducing pairs
Frames are nowadays a standard tool in many areas of mathematics, physics, and engineering. However, there are situations where it is difficult, even impossible, to design an appropriate frame. Thus there is room for generalizations, obtained by relaxing the constraints. A first case is that of semi-frames, in which one frame bound only is satisfied. Accordingly, one has to distinguish between upper and lower semi-frames. We will summarize this construction. Even more, one may get rid of both bounds, but then one needs two basic functions and one is led to the notion of reproducing pair. It turns out that every reproducing pair generates two Hilbert spaces, conjugate dual of each other. We …
Fully representable and*-semisimple topological partial*-algebras
We continue our study of topological partial *-algebras, focusing our attention to *-semisimple partial *-algebras, that is, those that possess a {multiplication core} and sufficiently many *-representations. We discuss the respective roles of invariant positive sesquilinear (ips) forms and representable continuous linear functionals and focus on the case where the two notions are completely interchangeable (fully representable partial *-algebras) with the scope of characterizing a *-semisimple partial *-algebra. Finally we describe various notions of bounded elements in such a partial *-algebra, in particular, those defined in terms of a positive cone (order bounded elements). The outcome …
PIP-Space Valued Reproducing Pairs of Measurable Functions
We analyze the notion of reproducing pairs of weakly measurable functions, a generalization of continuous frames. The aim is to represent elements of an abstract space Y as superpositions of weakly measurable functions belonging to a space Z : = Z ( X , μ ), where ( X , μ ) is a measure space. Three cases are envisaged, with increasing generality: (i) Y and Z are both Hilbert spaces; (ii) Y is a Hilbert space, but Z is a pip-space; (iii) Y and Z are both pip-spaces. It is shown, in particular, that the requirement that a pair of measurable functions be reproducing strongly constrains the structure of the initial space Y. Examples are presented for each case.
Spectral Properties of Partial *-Algebras
We continue our study of topological partial *algebras focusing our attention to some basic spectral properties. The special case of partial *-algebras of operators is examined first, in order to find sufficient hints for the study of the abstract case. The outcome consists in the selection of a class of topological partial *-algebras (partial GC*-algebras) that behave well from the spectral point of view and that allow, under certain conditions, a faithful realization as a partial O*-algebra.
TOPOLOGICAL PARTIAL *-ALGEBRAS: BASIC PROPERTIES AND EXAMPLES
Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).