6533b839fe1ef96bd12a65be

RESEARCH PRODUCT

Metric Operators, Generalized Hermiticity and Lattices of Hilbert Spaces

Camillo TrapaniJean-pierre Antoine

subject

Discrete mathematicsUnbounded operatorVon Neumann's theoremPure mathematicsMetric operators Hermiticity Pip-spacesSettore MAT/05 - Analisi MatematicaHermitian adjointNuclear operatorOperator theoryOperator normCompact operator on Hilbert spaceMathematicsQuasinormal operator

description

Pseudo-Hermitian quantum mechanics (QM) is a recent, unconventional, approach to QM, based on the use of non-self-adjoint Hamiltonians, whose self-adjointness can be restored by changing the ambient Hilbert space, via a so-called metric operator. The PT-symmetric Hamiltonians are usually pseudo-Hermitian operators, a term introduced a long time ago by Dieudonné for characterizing those bounded operators A that satisfy a relation of the form GA = A G, where G is a metric operator, that is, a strictly positive self-adjoint operator. This chapter explores further the structure of unbounded metric operators, in particular, their incidence on similarity. It examines the notion of similarity between operators induced by a bounded metric operator with bounded inverse. The goal here is to study which spectral properties are preserved under such a quasi-similarity relation. The chapter applies some of the previous results to operators on the scale of Hilbert spaces generated by the metric operator.

https://doi.org/10.1002/9781118855300.ch7