6533b7defe1ef96bd1276762

RESEARCH PRODUCT

Banach partial *-algebras: an overview

Jean-pierre AntoineCamillo Trapani

subject

Pure mathematicsMathematics::Functional AnalysisAlgebra and Number Theorypartial inner product spacesPartial *-algebra Banach partial *-algebra CQ*-algebra partial inner product space operators on Hilbert scale.Partial algebraPartial *-algebraspartial $*$-algebraCQ*-algebraspartial inner product spaceSettore MAT/05 - Analisi Matematica$CQ^*$-algebraBanach partial *-algebrasoperators on Hilbert scaleBanach partial $*$-algebra46J1008A55Analysis47L60Mathematics

description

A Banach partial $*$-algebra is a locally convex partial $*$-algebra whose total space is a Banach space. A Banach partial $*$-algebra is said to be of type (B) if it possesses a generating family of multiplier spaces that are also Banach spaces. We describe the basic properties of these objects and display a number of examples, namely, $L^p$-like function spaces and spaces of operators on Hilbert scales or lattices. Finally we analyze the important cases of Banach quasi $*$-algebras and $CQ^*$-algebras.

https://hdl.handle.net/2078.1/196076