6533b7dcfe1ef96bd1272a38
RESEARCH PRODUCT
The Partial Inner Product Space Method: A Quick Overview
Jean-pierre AntoineCamillo Trapanisubject
Partial inner product spacesPure mathematicsNuclear operatorPhysicsQC1-999Applied MathematicsTopological tensor productGeneral Physics and AstronomyOperator theorySpace (mathematics)Compact operator on Hilbert spaceSettore MAT/05 - Analisi MatematicaFréchet spaceInterpolation spaceLp spaceMathematicsdescription
Many families of function spaces play a central role in analysis, in particular, in signal processing (e.g., wavelet or Gabor analysis). Typical are spaces, Besov spaces, amalgam spaces, or modulation spaces. In all these cases, the parameter indexing the family measures the behavior (regularity, decay properties) of particular functions or operators. It turns out that all these space families are, or contain, scales or lattices of Banach spaces, which are special cases ofpartial inner product spaces(PIP-spaces). In this context, it is often said that such families should be taken as a whole and operators, bases, and frames on them should be defined globally, for the whole family, instead of individual spaces. In this paper, we will give an overview of PIP-spaces and operators on them, illustrating the results by space families of interest in mathematical physics and signal analysis. The interesting fact is that they allow a global definition of operators, and various operator classes on them have been defined.
year | journal | country | edition | language |
---|---|---|---|---|
2010-01-01 | Advances in Mathematical Physics |