6533b870fe1ef96bd12d051e

RESEARCH PRODUCT

TOPOLOGICAL PARTIAL *-ALGEBRAS: BASIC PROPERTIES AND EXAMPLES

Fabio BagarelloCamillo TrapaniJean-pierre Antoine

subject

Connected spaceTopological algebraTopological tensor productFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Topological spaceTopologyTopological vector spaceHomeomorphismSettore MAT/05 - Analisi MatematicaLocally convex topological vector spaceMathematical PhysicTopological ringSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematics

description

Let [Formula: see text] be a partial *-algebra endowed with a topology τ that makes it into a locally convex topological vector space [Formula: see text]. Then [Formula: see text] is called a topological partial *-algebra if it satisfies a number of conditions, which all amount to require that the topology τ fits with the multiplier structure of [Formula: see text]. Besides the obvious cases of topological quasi *-algebras and CQ*-algebras, we examine several classes of potential topological partial *-algebras, either function spaces (lattices of Lp spaces on [0, 1] or on ℝ, amalgam spaces), or partial *-algebras of operators (operators on a partial inner product space, O*-algebras).

https://doi.org/10.1142/s0129055x99000106