Search results for "ion Channels"
showing 10 items of 137 documents
Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalis…
2017
Abstract In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane’s fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disorde…
Bioelectrical Coupling of Single-Cell States in Multicellular Systems.
2020
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depo…
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach.
2018
We review the basic concepts involved in bioelectrically-coupled multicellular domains, focusing on the role of membrane potentials (Vmem). In the first model, single-cell Vmem is modulated by two generic polarizing and depolarizing ion channels, while intercellular coupling is implemented via voltage-gated gap junctions. Biochemical and bioelectrical signals are integrated via a feedback loop between Vmem and the transcription and translation of a protein forming an ion channel. The effective rate constants depend on the single-cell Vmem because these potentials modulate the local concentrations of signaling molecules and ions. This electrochemically-based idealization of the complex bioph…
A Thermodynamic Model of Monovalent Cation Homeostasis in the Yeast Saccharomyces cerevisiae
2016
Cationic and heavy metal toxicity is involved in a substantial number of diseases in mammals and crop plants. Therefore, the understanding of tightly regulated transporter activities, as well as conceiving the interplay of regulatory mechanisms, is of substantial interest. A generalized thermodynamic description is developed for the complex interplay of the plasma membrane ion transporters, membrane potential and the consumption of energy for maintaining and restoring specific intracellular cation concentrations. This concept is applied to the homeostasis of cation concentrations in the yeast cells of S. cerevisiae. The thermodynamic approach allows to model passive ion fluxes driven by the…
Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport
2017
Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data manage…
Extracellular electrical recording of pH-triggered bursts in C6 glioma cell populations
2016
Extracellular electrode recording demonstrates acid-triggered electrical activity in glioma cell populations.
The role of extracellular calcium in bone metastasis
2016
AbstractThis review summarizes the role of extracellular calcium, as found present in the bone tissue, in the process of bone metastasis.
Implication of TRPC3 channel in gustatory perception of dietary lipids
2020
Aim The pathogenesis of obesity has been associated with high intake of dietary fat, and some recent studies have explored the cellular mechanisms of oro-sensory detection of dietary fatty acids. We further assessed the role of transient receptor potential canonical (TRPC) channels in oro-sensory perception of dietary lipids. Methods We determined by RT-qPCR and western blotting the expression of TRPC3/6/7 channels in mouse fungiform taste bud cells (mTBC). Immunocytochemistry was used to explore whether TRPC3 channels were co-expressed with fatty acid receptors. We employed wild-type (WT) mTBC, and those transfected with small interfering RNAs (siRNAs) against TRPC3 or STIM1. Ca2+ signalli…
More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation.
2021
ABSTRACT Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners …
A Geometrical Channel Model for MIMO Mobile-to-Mobile Fading Channels in Cooperative Networks
2009
This paper deals with the modeling and analysis of narrowband multiple-input multiple-output (MIMO) mobile- to-mobile (M2M) fading channels in relay-based cooperative networks. Non-line-of-sight (NLOS) propagation conditions are assumed in the transmission links from the source mobile station to the destination mobile station via the mobile relay. A stochastic narrowband MIMO M2M reference channel model is derived from the geometrical three-ring scattering model, where it is assumed that an infinite number of local scatterers surround the source mobile station, the mobile relay, and the destination mobile station. The complex channel gains associated with the new reference channel model are…