Search results for "iron complexes"

showing 8 items of 18 documents

Iron(III) bis(pyrazol-1-yl)acetate based decanuclear metallacycles: synthesis, structure, magnetic properties and DFT calculations

2016

The synthesis, structural aspects, magnetic interpretation and theoretical rationalizations for a new member of the ferric wheel family, a decanuclear iron(III) complex with the formula [Fe10(bdtbpza)10(μ2-OCH3)20] (1), featuring the N,N,O tridentate bis(3,5-di-tert-butylpyrazol-1-yl)acetate ligand, are reported. The influence of the steric effect on both the core geometry and coordination mode is observed. Temperature dependent (2.0–300 K range) magnetic susceptibility studies carried out on complexes 1 established unequivocally antiferromagnetic (AF) interactions between high-spin iron(III) centers (S = 5/2), leading to a ground state S = 0. The mechanism of AF intramolecular coupling was…

Steric effects010405 organic chemistryChemistryStereochemistryLigand010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic ChemistryCrystallographyiron complexesIntramolecular forcemetallacyclesmedicineFerricAntiferromagnetismacetate ligandsmagnetic propertiesGround stateta116density functional theoryMagnetic interpretationmedicine.drugDalton Transactions
researchProduct

Remarkable Steric Effects and Influence of Monodentate Axial Ligands L on the Spin-Crossover Properties of trans-[FeII(N4 ligand)L] Complexes

2007

Iron(II) complexes obtained from tetradentate, rigid, linear N4 ligands have been investigated to appraise the influence of steric effects and the impact of trans-coordinated anions on the spin-transition behavior. As expected, the well-designed ligands embrace the metal center, resulting in octahedral iron(II) complexes where the basal plane is fully occupied by the pyridine/pyrazole N4 ligand, while anions or solvent molecules are exclusively axially coordinated. Precursor complexes, namely, [Fe(bpzbpy)(MeOH)2](BF4)2 (where bpzbpy symbolizes the ligand 6,6'-bis(N-pyrazolylmethyl)-2,2'-bipyridine) and [Fe(mbpzbpy)(MeOH)2](BF4)2 (where mbpzbpy symbolizes the ligand 6,6'-bis(3,5-dimethyl-N-p…

Steric effectsDenticityTetradentate ligandThiocyanateMössbauer spectroscopy010405 organic chemistryLigandStereochemistry[CHIM.MATE]Chemical Sciences/Material chemistryIron complexesPyrazoleSpin crossover010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrySpin crossoverPyridinePhysical and Theoretical ChemistryDicyanamideInorganic Chemistry
researchProduct

Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species

2016

El mateix article està publicat en alemany a l'edició alemanya d' 'Angewandte Chemie' (ISSN 0044-8249, EISSN 1521-3757), 2016, vol. 128, núm. 21, p.6418–6422. DOI http://dx.doi.org/10.1002/ange.201601396 The reaction of [Fe(CF3SO3)2(PyNMe3)] with excess peracetic acid at −40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [FeIII(OOAc)(PyNMe3)]2+ and [FeV(O)(OAc)(PyNMe3)]2+, in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the subs…

Steric effectsoxidationIronKineticsAlkenes010402 general chemistryMedicinal chemistry01 natural sciencesCatalysisCatalysisReaction ratechemistry.chemical_compoundPeracetic acidMetastabilityepoxidationEpòxidsOrganic chemistryChemistry010405 organic chemistrySubstrate (chemistry)General Chemistrynonheme iron complexesGeneral MedicineEpoxy compoundsNonheme iron0104 chemical sciencesAlquenskineticsolefinsFerroAngewandte Chemie
researchProduct

Comparative Experimental and Theoretical Study of the Fe L-2,L-3-Edges X-ray Absorption Spectroscopy in Three Highly Popular, Low-Spin Organoiron Com…

2019

The occupied and unoccupied electronic structures of three highly popular, closed shell organoiron complexes ([Fe(CO)(5)], [(eta(5)-C5H5 )Fe(CO)(mu-CO)](2), and [(eta(5)-C5H5)(2)Fe]) have been theoretically investigated by taking advantage of density functional theory (DFT) calculations coupled to the isolobal analogy (Elian et al. Inorg. Chem. 1976, 15, 1148). The adopted approach allowed us to look into the relative role played by the ligand -> Fe donation and the Fe -> ligand back-donation in title molecules, as well as to investigate how CO- (terminal or bridging) and [(eta(5)-C5H5)](-)-based pi* orbitals compete when these two ligands are simultaneously present as in [(eta(5)-C5H…

XASXAS spectroscopy Organoiron complexes DFT.High Resolution X-Ray Absorption SpectroscopyFe L23 edgegas phasedensity functional theory
researchProduct

Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands

2020

The possibility of achieving luminescent and photophysically active metal-organic compounds relies on the stabilization of charge transfer states and kinetically and thermodynamically blocking non-...

[CHIM.INOR] Chemical Sciences/Inorganic chemistryDenticity02 engineering and technology[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesChemical synthesischemistry.chemical_compoundPyridinePolymer chemistry[CHIM] Chemical Sciences[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistryfused NHCComputingMilieux_MISCELLANEOUSphotophysicsLigandMinimum Energy Path[CHIM.COOR] Chemical Sciences/Coordination chemistry021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryGeneral Energyiron complexeschemistrydecay process0210 nano-technologyLuminescenceTD-DFT
researchProduct

Two-dimensional assembling of 4,4'-bipyridine and 4,4'-azopyridine bridged iron(II) linear coordination polymers via hydrogen bond

1999

[EN] Novel two-dimensional polymers, [Fe(L-1)(H2O)(2)(NCX)(2)]. L-1 (L-1 =4.4'-bipyridine (bipy)) (1, 2) and [Fe(L-2)(CH3OH)(2)-(NCX)(2)]. L-2 (L-2 =4,4'-azopyridine (azpy)) (3) and X = S (1, 3), Se (2), have been synthesized and characterized by X-ray crystallography. The structures reveal the formation of tranzs-L-bridged [Fe(NCX)(2)(Y)(2)] where Y=H2O, CH3OH linear chains assembled into two-dimensional networks by hydrogen bonds between the uncoordinated ligand L and the coordinated solvent molecules.

chemistry.chemical_classificationHydrogen bondLigandPolymerCrystal structureIron complexes44'-BipyridineInorganic ChemistrySolventCrystallographychemistry.chemical_compoundchemistryFISICA APLICADASelf assemblingCrystal structuresMaterials ChemistryMoleculePhysical and Theoretical ChemistrySelf-assemblingCoordination polymer complexes
researchProduct

Bridgehead isomer effects in bis(phosphido)-bridged diiron hexacarbonyl proton reduction electrocatalysts

2017

The influence of the substitution, orientation and structure of the phosphido bridges in [Fe2(CO)6(μ-PR2)2] electrocatalysts of proton reduction has been studied. The isomers e,a-[Fe2(CO)6{μ-P(Ar)H}2] (1a(Ar): Ar = Ph, 2′-methoxy-1,1′-binaphthyl (bn′)), e,e-[Fe2(CO)6{μ-P(Ar)H}2] (1b(Ar): Ar = Ph, bn′) were isolated from reactions of iron pentacarbonyl and the corresponding primary phosphine, syntheses that also afforded the phosphinidene-capped tri-iron clusters, [Fe3(CO)9(μ-CO)(μ3-Pbn′)] (2) and [Fe3(CO)9(μ3-PAr)2] (3(Ar), Ar = Ph, bn′). A ferrocenyl (Fc)-substituted dimer [Fe2(CO)6{μ:μ′-1,2-(P(CH2Fc)CH2)2C6H4}] (4), in which the two phosphido bridges are linked by an o-xylyl group, was al…

chemistry.chemical_classificationHydrogen010405 organic chemistryDimerbridging ligandsphosphido ligandschemistry.chemical_elementSulfonic acid010402 general chemistryPhotochemistryElectrochemistryproton reduction01 natural sciences0104 chemical sciencesIron pentacarbonylCatalysisInorganic Chemistrychemistry.chemical_compoundCrystallographyiron complexeschemistryelectrocatalysista116PhosphineTetrahydrofuranDalton Transactions
researchProduct

Crystal structure of tricarbonyl(μ-diphenylphosphido-κ2P:P)(methyldiphenylsilyl-κSi)bis(triphenylphosphane-κP)iron(II)platinum(0)(Fe—Pt)

2015

The title compound belongs to the large family of heterodinuclear phosphide-bridged complexes. The Fe—Pt bond is of 2.7738 (4) Å and there is an unprecedented arrangement of the silyl ligand in a trans-position with respect to the metal–metal vector in the family of phosphide-bridged iron–platinum heterobimetallics.

crystal structuremetal–metal bondSilylationStereochemistrychemistry.chemical_elementCrystal structureMedicinal chemistryResearch Communicationslcsh:Chemistrychemistry.chemical_compoundphosphido bridges[CHIM]Chemical SciencesGeneral Materials Sciencediphenylmethylsilyl ligandComputingMilieux_MISCELLANEOUSdi­phenyl­methyl­silyl ligandLigandTricarbonGeneral ChemistryCondensed Matter Physics3. Good healthiron complexeslcsh:QD1-999chemistryheterobimetallicsPlatinumplatinum complexesActa Crystallographica Section E Crystallographic Communications
researchProduct