Search results for "isothermal titration calorimetry"

showing 10 items of 51 documents

Binding of urate and caffeine to hemocyanin of the lobster Homarus vulgaris (E.) as studied by isothermal titration calorimetry.

2000

Hemocyanin serves as an oxygen carrier in the hemolymph of the European lobster Homarus vulgaris. The oxygen binding behavior of the pigment is modulated by metabolic effectors such as lactate and urate. Urate and caffeine binding to 12-meric hemocyanin (H. vulgaris) was studied using isothermal titration calorimetry (ITC). Binding isotherms were determined for fully oxygenated hemocyanin between pH 7.55 and 8.15. No pH dependence of the binding parameters could be found for either effector. Since the magnitude of the Bohr effect depends on the urate concentration, the absence of any pH dependence of urate and caffeine binding to oxygenated hemocyanin suggests two conformations of the pigme…

Malemedicine.medical_treatmentBohr effectBuffersCalorimetryBiochemistryCaffeineHemolymphmedicineAnimalsBinding siteTromethamineBinding SitesChemistryTitrimetryIsothermal titration calorimetryHemocyaninHydrogen-Ion ConcentrationBinding constantNephropidaeUric AcidCrystallographyHemocyaninsThermodynamicsTitrationOxygen bindingBiochemistry
researchProduct

Biopolymer-Targeted Adsorption onto Halloysite Nanotubes in Aqueous Media.

2017

Studies on the adsorption of biopolymers onto halloysite nanotubes (HNTs) in water were conducted. Three polymers with different charges-anionic (pectin), neutral (hydroxypropyl cellulose), and cationic (chitosan)-were chosen. The thermodynamic parameters for the adsorption of polymers onto the HNT surface were determined by isothermal titration calorimetry (ITC). The experimental data were interpreted based on a Langmuir adsorption model. The standard variations in free energy, enthalpy, and entropy of the process were obtained and discussed. Turbidimetry was used to evaluate the stability of functionalized nanoparticles in water. The ζ-potential clarified the surface charge properties of …

Materials scienceBiopolymerFunctionalized nanotube02 engineering and technologyengineering.materialHydroxypropyl cellulose010402 general chemistry01 natural sciencesHalloysitechemistry.chemical_compoundsymbols.namesakeAdsorptionEnthalpyKaoliniteLangmuir adsorption modelPolymer chemistryElectrochemistryHalloysite nanotube (HNTs)General Materials ScienceSurface chargeFree energyPolymerSpectroscopyYarn Functionalized nanoparticleHydroxypropyl celluloseLangmuir adsorption modelWaterIsothermal titration calorimetrySurfaces and InterfacesPolymer adsorptionThermal Propertie021001 nanoscience & nanotechnologyCondensed Matter PhysicsPectin0104 chemical sciencesBiomoleculeNanotubechemistryChemical engineeringengineeringsymbolsIsothermal titration calorimetryBiopolymerAdsorption0210 nano-technologySurface charge propertieThermodynamic parameter Polymers ChitosanLangmuir : the ACS journal of surfaces and colloids
researchProduct

PAA-PAMPS Copolymers as an Efficient Tool to Control CaCO3 Scale Formation

2013

Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4 center dot 2H(2)O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then b…

Materials sciencePolymersPotentiometric titrationAcrylic ResinsMicroscopy Atomic Force530Calcium Carbonatelaw.inventionchemistry.chemical_compoundlawPolymer chemistryElectrochemistryCopolymerChemical PrecipitationGeneral Materials ScienceReversible addition−fragmentation chain-transfer polymerizationCrystallizationSpectroscopyAcrylic acidchemistry.chemical_classificationWaterIsothermal titration calorimetrySurfaces and InterfacesPolymerCondensed Matter PhysicsPolyelectrolytechemistrySulfonic AcidsCrystallization
researchProduct

Structure of the Human TRPML2 Ion Channel Extracytosolic/Lumenal Domain.

2019

Summary TRPML2 is the least structurally characterized mammalian transient receptor potential mucolipin ion channel. The TRPML family hallmark is a large extracytosolic/lumenal domain (ELD) between transmembrane helices S1 and S2. We present crystal structures of the tetrameric human TRPML2 ELD at pH 6.5 (2.0 A) and 4.5 (2.95 A), corresponding to the pH values in recycling endosomes and lysosomes. Isothermal titration calorimetry shows Ca2+ binding to the highly acidic central pre-pore loop which is abrogated at low pH, in line with a pH-dependent channel regulation model. Small angle X-ray scattering confirms the ELD dimensions in solution. Changes in pH or Ca2+ concentration do not affect…

Models Molecular0303 health sciencesBinding SitesTRPMLEndosomeChemistrySmall-angle X-ray scatteringProtein Conformation030302 biochemistry & molecular biologyIsothermal titration calorimetryHydrogen-Ion ConcentrationCrystallography X-Ray03 medical and health sciencesTransient receptor potential channelTransmembrane domainTransient Receptor Potential ChannelsProtein DomainsStructural BiologyBiophysicsHumansCalciumMolecular BiologyProtein secondary structureIon channel030304 developmental biologyStructure (London, England : 1993)
researchProduct

2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes.

2013

AbstractSticholysin II (StnII) is a pore-forming toxin from the sea anemone Stichodactyla heliantus which belongs to the large actinoporin family. The toxin binds to sphingomyelin (SM) containing membranes, and shows high binding specificity for this lipid. In this study, we have examined the role of the hydrogen bonding groups of the SM long-chain base (i.e., the 2NH and the 3OH) for StnII recognition. We prepared methylated SM-analogs which had reduced hydrogen bonding capability from 2NH and 3OH. Both surface plasmon resonance experiments, and isothermal titration calorimetry measurements indicated that StnII failed to bind to bilayers containing methylated SM-analogs, whereas clear bind…

Models MolecularPore Forming Cytotoxic ProteinsMembrane permeabilizationLipid BilayersBiophysicsCalorimetryta3111Biochemistrychemistry.chemical_compoundCnidarian VenomsAnimalsComputer SimulationLipid bilayerta116Binding selectivityUnilamellar LiposomesPhosphocholineBinding SitesMolecular StructureChemistryHydrogen bondVesicleta1182Isothermal titration calorimetryHydrogen BondingCell BiologySurface Plasmon ResonanceProtein Structure TertiarySphingomyelinsKineticsMembraneSea AnemonesBiochemistryMolecular dockingIsothermal titration calorimetryBiophysicsPhosphatidylcholinesSphingomyelinProtein BindingBiochimica et biophysica acta
researchProduct

Mona/Gads SH3C binding to hematopoietic progenitor kinase 1 (HPK1) combines an atypical SH3 binding motif, R/KXXK, with a classical PXXP motif embedd…

2004

Hematopoietic progenitor kinase 1 (HPK1) is implicated in signaling downstream of the T cell receptor. Its non-catalytic, C-terminal half contains several prolinerich motifs, which have been shown to interact with different SH3 domain-containing adaptor proteins in vitro. One of these, Mona/Gads, was also shown to bind HPK1 in mouse T cells in vivo. The region of HPK1 that binds to the Mona/Gads C-terminal SH3 domain has been mapped and shows only very limited similarity to a recently identified high affinity binding motif in SLP-76, another T-cell adaptor. Using isothermal titration calorimetry and x-ray crystallography, the binding of the HPK1 motif to Mona/Gads SH3C has now been characte…

Models MolecularTime FactorsProtein ConformationAmino Acid MotifsMolecular Sequence DataPlasma protein bindingBiologyCalorimetryProtein Serine-Threonine KinasesCrystallography X-RayBiochemistrySH3 domainProtein Structure Secondarysrc Homology DomainsMiceProtein structureAnimalsHumansAmino Acid SequenceMolecular BiologyPeptide sequencePolyproline helixAdaptor Proteins Signal TransducingSequence Homology Amino AcidSignal transducing adaptor proteinIsothermal titration calorimetryCell BiologyPhosphoproteinsCell biologyProtein Structure TertiaryCrystallographyKineticsPXXP MotifCarrier ProteinsPeptidesProtein BindingThe Journal of biological chemistry
researchProduct

Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects.

2022

Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in sol…

Molecular dynamics simulationsSpeciationCalorimetryBiochemistryBiological membraneAmphiphilic systemsKineticsMetal complexesSpectrophotometrySettore CHIM/03 - Chimica Generale E InorganicaCoordination ComplexesMetalsSolution thermodynamicsDensity functional theory calculationsDrug deliveryIsothermal titration calorimetryThermodynamicsMolecular Biologymetal complexes; amphiphilic systems; drug delivery; biological membrane; solution thermodynamics; speciation; isothermal titration calorimetry; spectrophotometry; molecular dynamics simulations; density functional theory calculationsBiomolecules
researchProduct

Heparin-Based Nanocapsules as Potential Drug Delivery Systems

2015

Herein, the synthesis and characterization of heparin-based nanocapsules (NCs) as potential drug delivery systems is described. For the synthesis of the heparin-based NCs, the versatile method of miniemulsion polymerization at the droplets interface was achieved resulting in narrowly distributed NCs with 180 nm in diameter. Scanning and transmission electron microscopy images showed clearly NC morphology. A highly negative charge density for the heparin-based NCs was determined by measuring the electro-kinetic potential. Measuring the activated clotting time demonstrated the biological intactness of the polymeric shell. The ability of heparin-based NCs to bind to antithrombin (AT III) was i…

Polymers and PlasticsChemistryAnalytical chemistryBioengineeringIsothermal titration calorimetrybehavioral disciplines and activitiesNanocapsulesBiomaterialsMiniemulsionPolymerizationChemical engineeringDynamic light scatteringTransmission electron microscopymental disordersDrug deliveryMaterials ChemistryChemical stabilityBiotechnologyMacromolecular Bioscience
researchProduct

Thermodynamics of Surfactant, Block Copolymer and Their Mixtures in Water: The Role of the Isothermal Calorimetry

2009

The thermodynamics of conventional surfactants, block copolymers and their mixtures in water was described to the light of the enthalpy function. The two methodologies, i.e. the van't Hoff approach and the isothermal calorimetry, used to determine the enthalpy of micellization of pure surfactants and block copolymers were described. The van't Hoff method was critically discussed. The aqueous copolymer+surfactant mixtures were analyzed by means of the isothermal titration calorimetry and the enthalpy of transfer of the copolymer from the water to the aqueous surfactant solutions. Thermodynamic models were presented to show the procedure to extract straightforward molecular insights from the …

PolymerssurfactantEnthalpyThermodynamicsReviewCalorimetrycopolymer+surfactant mixtureCalorimetryMicelleenthalpy of injectionCatalysisEnthalpy change of solutionInorganic Chemistrylcsh:ChemistrySurface-Active Agentsenthalpy of copolymer+surfactant aggregationenthalpy of transferCopolymerPhysical and Theoretical ChemistryMolecular Biologylcsh:QH301-705.5MicellesSpectroscopyenthalpy of micellizationchemistry.chemical_classificationAqueous solutioncopolymerOrganic Chemistrycopolymer+surfactant mixturesWaterIsothermal titration calorimetryGeneral MedicinePolymerComputer Science Applicationschemistrylcsh:Biology (General)lcsh:QD1-999Thermodynamics
researchProduct

Allosteric Models for Multimeric Proteins:  Oxygen-Linked Effector Binding in Hemocyanin

2005

In many crustaceans, changing concentrations of several low molecular weight compounds modulates hemocyanin oxygen binding, resulting in lower or higher oxygen affinities of the pigment. The nonphysiological effector caffeine and the physiological modulator urate, the latter accumulating in the hemolymph of the lobster Homarus vulgaris during hypoxia, increase hemocyanin oxygen affinity and decrease cooperativity of oxygen binding. To derive a model that describes the mechanism of allosteric interaction between hemocyanin and oxygen in the presence of urate or caffeine, studies of oxygen, urate, and caffeine binding to hemocyanin were performed. Exposure of lobster hemocyanin to various pH …

Protein Conformationmedicine.medical_treatmentAllosteric regulationchemistry.chemical_elementCooperativityCalorimetryBiochemistryOxygenAllosteric RegulationCaffeineHemolymphmedicineAnimalsBinding siteHypoxiaBinding SitesIsothermal titration calorimetryHemocyaninNephropidaeUric AcidOxygenModels ChemicalBiochemistrychemistryHemocyaninsOxygen bindingProtein BindingBiochemistry
researchProduct