Search results for "kernel"

showing 10 items of 357 documents

Kernel estimation and display of a five-dimensional conditional intensity function

2018

The aim of this paper is to find a convenient and effective method of displaying some second order properties in a neighbourhood of a selected point of the process. The used techniques are based on very general high-dimensional nonparametric smoothing developed to define a more gen- eral version of the conditional intensity function introduced in earlier earthquake studies by Vere-Jones (1978). 1976) is commonly used for such a purpose in discussing the cumulative behavior of interpoint distances about an initial point. It is defined as the expected number of events falling within a given distance of the initial event, divided by the overall density (rate in 2-dimensions) of the process, sa…

Kernel density estimationlcsh:QC801-809Process (computing)Neighbourhood (graph theory)Kernel intensity estimator seismic activity multi-demensional point processExpected valuelcsh:QC1-999lcsh:Geophysics. Cosmic physicsStatisticsOrder (group theory)Effective methodPoint (geometry)lcsh:QSettore SECS-S/01 - Statisticalcsh:Sciencelcsh:PhysicsEvent (probability theory)Mathematics
researchProduct

Disentangling Derivatives, Uncertainty and Error in Gaussian Process Models

2020

Gaussian Processes (GPs) are a class of kernel methods that have shown to be very useful in geoscience applications. They are widely used because they are simple, flexible and provide very accurate estimates for nonlinear problems, especially in parameter retrieval. An addition to a predictive mean function, GPs come equipped with a useful property: the predictive variance function which provides confidence intervals for the predictions. The GP formulation usually assumes that there is no input noise in the training and testing points, only in the observations. However, this is often not the case in Earth observation problems where an accurate assessment of the instrument error is usually a…

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technology01 natural sciencesMachine Learning (cs.LG)symbols.namesakeStatistics - Machine LearningGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesVariance functionPropagation of uncertaintyVariance (accounting)Function (mathematics)Confidence intervalNonlinear systemNoiseKernel method13. Climate actionKernel (statistics)symbolsAlgorithmIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

On Functions of Integrable Mean Oscillation

2005

Given we denote by the modulus of mean oscillation given by where is an arc of , stands for the normalized length of , and . Similarly we denote by the modulus of harmonic oscillation given by where and stand for the Poisson kernel and the Poisson integral of respectively. It is shown that, for each , there exists such that

Arc (geometry)symbols.namesakeIntegrable systemOscillationGeneral MathematicsPoisson kernelMathematical analysissymbolsModulusHarmonic oscillatorMathematicsRevista Matemática Complutense
researchProduct

Support vector machines in engineering: an overview

2014

This paper provides an overview of the support vector machine SVM methodology and its applicability to real-world engineering problems. Specifically, the aim of this study is to review the current state of the SVM technique, and to show some of its latest successful results in real-world problems present in different engineering fields. The paper starts by reviewing the main basic concepts of SVMs and kernel methods. Kernel theory, SVMs, support vector regression SVR, and SVM in signal processing and hybridization of SVMs with meta-heuristics are fully described in the first part of this paper. The adoption of SVMs in engineering is nowadays a fact. As we illustrate in this paper, SVMs can …

Computer Science::Machine LearningBeamformingData processingSignal processingGeneral Computer ScienceContextual image classificationComputer sciencebusiness.industryMachine learningcomputer.software_genreSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel methodState (computer science)Artificial intelligenceData miningbusinesscomputerDecoding methodsWiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
researchProduct

Fast Approximated Discriminative Common Vectors Using Rank-One SVD Updates

2013

An efficient incremental approach to the discriminative common vector (DCV) method for dimensionality reduction and classification is presented. The proposal consists of a rank-one update along with an adaptive restriction on the rank of the null space which leads to an approximate but convenient solution. The algorithm can be implemented very efficiently in terms of matrix operations and space complexity, which enables its use in large-scale dynamic application domains. Deep comparative experimentation using publicly available high dimensional image datasets has been carried out in order to properly assess the proposed algorithm against several recent incremental formulations.

Kernel (linear algebra)Discriminative modelRank (linear algebra)Computer scienceDimensionality reductionSingular value decompositionSpace (mathematics)AlgorithmMatrix multiplicationImage (mathematics)
researchProduct

Highlighting numerical insights of an efficient SPH method

2018

Abstract In this paper we focus on two sources of enhancement in accuracy and computational demanding in approximating a function and its derivatives by means of the Smoothed Particle Hydrodynamics method. The approximating power of the standard method is perceived to be poor and improvements can be gained making use of the Taylor series expansion of the kernel approximation of the function and its derivatives. The modified formulation is appealing providing more accurate results of the function and its derivatives simultaneously without changing the kernel function adopted in the computation. The request for greater accuracy needs kernel function derivatives with order up to the desidered …

Computer scienceApplied MathematicsGaussianComputation010103 numerical & computational mathematicsFunction (mathematics)01 natural sciences010101 applied mathematicsSmoothed-particle hydrodynamicsComputational Mathematicssymbols.namesakeSettore MAT/08 - Analisi NumericaKernel based methods Smoothed Particle Hydrodynamics Accuracy Convergence Improved fast Gaussian transform.Convergence (routing)symbolsTaylor seriesGaussian function0101 mathematicsFocus (optics)Algorithm
researchProduct

Sign and Rank Covariance Matrices: Statistical Properties and Application to Principal Components Analysis

2002

In this paper, the estimation of covariance matrices based on multivariate sign and rank vectors is discussed. Equivariance and robustness properties of the sign and rank covariance matrices are described. We show their use for the principal components analysis (PCA) problem. Limiting efficiencies of the estimation procedures for PCA are compared.

Covariance matrixbusiness.industrySparse PCAPattern recognitionCovarianceKernel principal component analysisCorrespondence analysisScatter matrixPrincipal component analysisApplied mathematicsArtificial intelligencebusinessCanonical correlationMathematics
researchProduct

Sparse kernel methods for high-dimensional survival data

2008

Abstract Sparse kernel methods like support vector machines (SVM) have been applied with great success to classification and (standard) regression settings. Existing support vector classification and regression techniques however are not suitable for partly censored survival data, which are typically analysed using Cox's proportional hazards model. As the partial likelihood of the proportional hazards model only depends on the covariates through inner products, it can be ‘kernelized’. The kernelized proportional hazards model however yields a solution that is dense, i.e. the solution depends on all observations. One of the key features of an SVM is that it yields a sparse solution, dependin…

Statistics and ProbabilityLung NeoplasmsLymphomaComputer sciencecomputer.software_genreComputing MethodologiesBiochemistryPattern Recognition AutomatedArtificial IntelligenceMargin (machine learning)CovariateCluster AnalysisHumansComputer SimulationFraction (mathematics)Molecular BiologyProportional Hazards ModelsModels StatisticalTraining setProportional hazards modelGene Expression ProfilingComputational BiologyComputer Science ApplicationsSupport vector machineComputational MathematicsKernel methodComputational Theory and MathematicsRegression AnalysisData miningcomputerAlgorithmsSoftwareBioinformatics
researchProduct

Kernel-Based Inference of Functions Over Graphs

2018

Abstract The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting—and prevalent in several fields of study—problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently for the signal processing by the community studying graphs. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The analytical discussion herein is complement…

Graph kernelTheoretical computer scienceComputer sciencebusiness.industryInference020206 networking & telecommunicationsPattern recognition02 engineering and technology01 natural sciencesGraph010104 statistics & probabilityKernel (linear algebra)Kernel methodPolynomial kernelString kernelKernel embedding of distributionsKernel (statistics)Radial basis function kernel0202 electrical engineering electronic engineering information engineeringArtificial intelligence0101 mathematicsTree kernelbusiness
researchProduct

Fractional integration, differentiation, and weighted Bergman spaces

1999

We study the action of fractional differentiation and integration on weighted Bergman spaces and also the Taylor coeffficients of functions in certain subclasses of these spaces. We then derive several criteria for the multipliers between such spaces, complementing and extending various recent results. Univalent Bergman functions are also considered.

Pure mathematicsMathematics::Complex VariablesGeneral Mathematics010102 general mathematicsMathematical analysisMathematical statisticsTaylor coefficientsMathematics & Statistics01 natural sciencesAction (physics)010101 applied mathematicsFractional differentiationBergman space0101 mathematicsMathematicsBergman kernel
researchProduct