Search results for "kernel"

showing 10 items of 357 documents

Kernel image similarity criterion

2011

This paper presents a family of metrics for assessing image similarity. The methods use the Hilbert-Schmidt Independence Criterion (HSIC) to estimate nonlinear statistical dependence between multidimensional images. The proposed methods have very good theoretical and practical properties. We illustrate the performance in evaluating the quality of natural photographic images, hyperspectral images under different noise levels, in synthetic multiresolution problems, and real pansharpening products.

Estimation theorybusiness.industryHyperspectral imagingPattern recognitionGrayscaleNonlinear systemKernel methodSimilarity criterionKernel (image processing)Computer Science::Computer Vision and Pattern RecognitionArtificial intelligencebusinessImage resolutionMathematics2011 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Remote Sensing Image Classification with Large Scale Gaussian Processes

2017

Current remote sensing image classification problems have to deal with an unprecedented amount of heterogeneous and complex data sources. Upcoming missions will soon provide large data streams that will make land cover/use classification difficult. Machine learning classifiers can help at this, and many methods are currently available. A popular kernel classifier is the Gaussian process classifier (GPC), since it approaches the classification problem with a solid probabilistic treatment, thus yielding confidence intervals for the predictions as well as very competitive results to state-of-the-art neural networks and support vector machines. However, its computational cost is prohibitive for…

FOS: Computer and information sciences010504 meteorology & atmospheric sciencesComputer scienceMultispectral image0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyLand cover01 natural sciencesStatistics - ApplicationsMachine Learning (cs.LG)Kernel (linear algebra)Bayes' theoremsymbols.namesakeStatistics - Machine LearningApplications (stat.AP)Electrical and Electronic EngineeringGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingContextual image classificationArtificial neural networkData stream miningProbabilistic logicSupport vector machineComputer Science - LearningKernel (image processing)symbolsGeneral Earth and Planetary Sciences
researchProduct

Optimized Kernel Entropy Components

2016

This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…

FOS: Computer and information sciencesComputer Networks and CommunicationsKernel density estimationMachine Learning (stat.ML)02 engineering and technologyKernel principal component analysisMachine Learning (cs.LG)Artificial IntelligencePolynomial kernelStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringMathematicsbusiness.industry020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsComputer Science - LearningKernel methodKernel embedding of distributionsVariable kernel density estimationRadial basis function kernelKernel smoother020201 artificial intelligence & image processingArtificial intelligencebusinessSoftwareIEEE Transactions on Neural Networks and Learning Systems
researchProduct

Retrieval of Case 2 Water Quality Parameters with Machine Learning

2018

Water quality parameters are derived applying several machine learning regression methods on the Case2eXtreme dataset (C2X). The used data are based on Hydrolight in-water radiative transfer simulations at Sentinel-3 OLCI wavebands, and the application is done exclusively for absorbing waters with high concentrations of coloured dissolved organic matter (CDOM). The regression approaches are: regularized linear, random forest, Kernel ridge, Gaussian process and support vector regressors. The validation is made with and an independent simulation dataset. A comparison with the OLCI Neural Network Swarm (ONSS) is made as well. The best approached is applied to a sample scene and compared with t…

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciences0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesData modelingMachine Learning (cs.LG)Physics - Geophysicssymbols.namesakeRadiative transferGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsArtificial neural networkbusiness.industry6. Clean waterRandom forestGeophysics (physics.geo-ph)Support vector machineColored dissolved organic matterKernel (statistics)Physics - Data Analysis Statistics and ProbabilitysymbolsArtificial intelligencebusinesscomputerData Analysis Statistics and Probability (physics.data-an)
researchProduct

Retrieval of coloured dissolved organic matter with machine learning methods

2017

The coloured dissolved organic matter (CDOM) concentration is the standard measure of humic substance in natural waters. CDOM measurements by remote sensing is calculated using the absorption coefficient (a) at a certain wavelength (e.g. 440nm). This paper presents a comparison of four machine learning methods for the retrieval of CDOM from remote sensing signals: regularized linear regression (RLR), random forest (RF), kernel ridge regression (KRR) and Gaussian process regression (GPR). Results are compared with the established polynomial regression algorithms. RLR is revealed as the simplest and most efficient method, followed closely by its nonlinear counterpart KRR.

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciences0211 other engineering and technologiesFOS: Physical sciences02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesMachine Learning (cs.LG)Physics - GeophysicsKrigingDissolved organic carbonLinear regression021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsPolynomial regressionbusiness.industry6. Clean waterGeophysics (physics.geo-ph)Random forestNonlinear systemColored dissolved organic matterKernel (statistics)Artificial intelligencebusinesscomputer
researchProduct

Disentangling Derivatives, Uncertainty and Error in Gaussian Process Models

2020

Gaussian Processes (GPs) are a class of kernel methods that have shown to be very useful in geoscience applications. They are widely used because they are simple, flexible and provide very accurate estimates for nonlinear problems, especially in parameter retrieval. An addition to a predictive mean function, GPs come equipped with a useful property: the predictive variance function which provides confidence intervals for the predictions. The GP formulation usually assumes that there is no input noise in the training and testing points, only in the observations. However, this is often not the case in Earth observation problems where an accurate assessment of the instrument error is usually a…

FOS: Computer and information sciencesComputer Science - Machine Learning010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technology01 natural sciencesMachine Learning (cs.LG)symbols.namesakeStatistics - Machine LearningGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesVariance functionPropagation of uncertaintyVariance (accounting)Function (mathematics)Confidence intervalNonlinear systemNoiseKernel method13. Climate actionKernel (statistics)symbolsAlgorithmIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Efficient Nonlinear RX Anomaly Detectors

2020

Current anomaly detection algorithms are typically challenged by either accuracy or efficiency. More accurate nonlinear detectors are typically slow and not scalable. In this letter, we propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the kernel function with either {\em data-independent} random Fourier features or {\em data-dependent} basis with the Nystr\"om approach. We compare all methods for both real multi- and hyperspectral images. We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm thanks t…

FOS: Computer and information sciencesComputer Science - Machine LearningBasis (linear algebra)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesApproximation algorithmHyperspectral imaging02 engineering and technologyElectrical Engineering and Systems Science - Image and Video ProcessingGeotechnical Engineering and Engineering GeologyRegularization (mathematics)Machine Learning (cs.LG)Nonlinear systemKernel (linear algebra)Kernel (statistics)FOS: Electrical engineering electronic engineering information engineeringAnomaly detectionElectrical and Electronic EngineeringAnomaly (physics)Algorithm021101 geological & geomatics engineeringIEEE Geoscience and Remote Sensing Letters
researchProduct

Nonlinear Cook distance for Anomalous Change Detection

2020

In this work we propose a method to find anomalous changes in remote sensing images based on the chronochrome approach. A regressor between images is used to discover the most {\em influential points} in the observed data. Typically, the pixels with largest residuals are decided to be anomalous changes. In order to find the anomalous pixels we consider the Cook distance and propose its nonlinear extension using random Fourier features as an efficient nonlinear measure of impact. Good empirical performance is shown over different multispectral images both visually and quantitatively evaluated with ROC curves.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyMeasure (mathematics)Machine Learning (cs.LG)Kernel (linear algebra)symbols.namesake0502 economics and businessCook's distance021101 geological & geomatics engineering050208 financePixelbusiness.industry05 social sciencesPattern recognitionNonlinear systemFourier transformKernel (image processing)Computer Science::Computer Vision and Pattern RecognitionsymbolsArtificial intelligencebusinessChange detection
researchProduct

Transfer Learning with Convolutional Networks for Atmospheric Parameter Retrieval

2018

The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP). Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models. Statistical models performance is compromised because of the extremely high spectral dimensionality and the high number of variables to be predicted simultaneously across the atmospheric column. All this poses a challenge for selecting and studying optimal models and processing schemes. Earlier work has shown non-linear models such as kernel methods and neural networks perform w…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceFeature extraction0211 other engineering and technologiesTranfer learningFOS: Physical sciences02 engineering and technologyAtmospheric modelInfrared atmospheric sounding interferometercomputer.software_genreConvolutional neural networkMachine Learning (cs.LG)0202 electrical engineering electronic engineering information engineeringInfrared measurements021101 geological & geomatics engineeringArtificial neural networkStatistical modelNumerical weather predictionParameter retrievalPhysics - Atmospheric and Oceanic PhysicsKernel method13. Climate actionAtmospheric and Oceanic Physics (physics.ao-ph)Convolutional neural networks020201 artificial intelligence & image processingData miningcomputerCurse of dimensionalityIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Accounting for Input Noise in Gaussian Process Parameter Retrieval

2020

Gaussian processes (GPs) are a class of Kernel methods that have shown to be very useful in geoscience and remote sensing applications for parameter retrieval, model inversion, and emulation. They are widely used because they are simple, flexible, and provide accurate estimates. GPs are based on a Bayesian statistical framework which provides a posterior probability function for each estimation. Therefore, besides the usual prediction (given in this case by the mean function), GPs come equipped with the possibility to obtain a predictive variance (i.e., error bars, confidence intervals) for each prediction. Unfortunately, the GP formulation usually assumes that there is no noise in the inpu…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePosterior probability0211 other engineering and technologiesMachine Learning (stat.ML)02 engineering and technologyMachine Learning (cs.LG)symbols.namesakeStatistics - Machine LearningElectrical and Electronic EngineeringGaussian process021101 geological & geomatics engineeringPropagation of uncertaintyNoise measurementbusiness.industryFunction (mathematics)Geotechnical Engineering and Engineering GeologySea surface temperatureNoiseKernel methodsymbolsGlobal Positioning SystemErrors-in-variables modelsbusinessAlgorithmIEEE Geoscience and Remote Sensing Letters
researchProduct