Search results for "kernel"
showing 10 items of 357 documents
Biased graph walks for RDF graph embeddings
2017
Knowledge Graphs have been recognized as a valuable source for background information in many data mining, information retrieval, natural language processing, and knowledge extraction tasks. However, obtaining a suitable feature vector representation from RDF graphs is a challenging task. In this paper, we extend the RDF2Vec approach, which leverages language modeling techniques for unsupervised feature extraction from sequences of entities. We generate sequences by exploiting local information from graph substructures, harvested by graph walks, and learn latent numerical representations of entities in RDF graphs. We extend the way we compute feature vector representations by comparing twel…
Automatic emulator and optimized look-up table generation for radiative transfer models
2017
This paper introduces an automatic methodology to construct emulators for costly radiative transfer models (RTMs). The proposed method is sequential and adaptive, and it is based on the notion of the acquisition function by which instead of optimizing the unknown RTM underlying function we propose to achieve accurate approximations. The Automatic Gaussian Process Emulator (AGAPE) methodology combines the interpolation capabilities of Gaussian processes (GPs) with the accurate design of an acquisition function that favors sampling in low density regions and flatness of the interpolation function. We illustrate the good capabilities of the method in toy examples and for the construction of an…
Pinch technique self-energies and vertices to all orders in perturbation theory
2003
The all-order construction of the pinch technique gluon self-energy and quark-gluon vertex is presented in detail within the class of linear covariant gauges. The main ingredients in our analysis are the identification of a special Green's function, which serves as a common kernel to all self-energy and vertex diagrams, and the judicious use of the Slavnov-Taylor identity it satisfies. In particular, it is shown that the ghost-Green's functions appearing in this identity capture precisely the result of the pinching action at arbitrary order. By virtue of this observation the construction of the quark-gluon vertex becomes particularly compact. It turns out that the aforementioned ghost-Green…
Analysis and description of an open source janitor project
2006
Masteroppgave i informasjons- og kommunikasjonsteknologi 2006 - Høgskolen i Agder, Grimstad The objective of this study is to describe the inside and impact of the Linux Kernel Janitor Project. To describe and discuss how such janitor activity can be useful for others is also an objective. The Linux Kernel Janitor Project is a project defined to perform maintenance of the Linux kernel source, often taking on tasks that nobody else will be doing. The patches produced by the janitors have been analysed and some of the effects and properties of the work the project has carried out are described. Analysis show that janitor activity reduces the amount of code while still keeping the same functio…
Hyperspectral detection of citrus damage with Mahalanobis kernel classifier
2007
Presented is a full computer vision system for the identification of post-harvest damage in citrus packing houses. The method is based on the combined use of hyperspectral images and the Mahalanobis kernel classifier. More accurate and reliable results compared to other methods are obtained in several scenarios and acquired images.
Cell-average multiresolution based on local polynomial regression. Application to image processing
2014
In Harten (1996) [32] presented a general framework about multiresolution representation based on four principal operators: decimation and prediction, discretization and reconstruction. The discretization operator indicates the nature of the data. In this work the pixels of a digital image are obtained as the average of a function in some defined cells. A family of Harten cell-average multiresolution schemes based on local polynomial regression is presented. The stability is ensured by the linearity of the operators obtained and the order is calculated. Some numerical experiments are performed testing the accuracy of the prediction operators in comparison with the classical linear and nonli…
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
2014
Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…
A time evolution model for total-variation based blind deconvolution
2007
Departamento Matematica Aplicada, Universidad de Valencia, Burjassot 46100, Spain.We propose a time evolution model for total-variation based blind deconvolution consisting of two evolution equations evolv-ing the signal by means of a nonlinear scale space method and the kernel by using a diffusion equation starting from the zerosignal and a delta function respectively. A preliminary numerical test consisting of blind deconvolution of a noiseless blurredimage is presented.
Semi-supervised Hyperspectral Image Classification with Graphs
2006
This paper presents a semi-supervised graph-based method for the classification of hyperspectral images. The method is designed to exploit the spatial/contextual information in the im- ages through composite kernels. The proposed method produces smoother classifications with respect to the intrinsic structure collectively revealed by known labeled and unlabeled points. Good accuracy in high dimensional spaces and low number of labeled samples (ill-posed situations) are produced as compared to standard inductive support vector machines.
Advances in Kernel Machines for Image Classification and Biophysical Parameter Retrieval
2017
Remote sensing data analysis is knowing an unprecedented upswing fostered by the activities of the public and private sectors of geospatial and environmental data analysis. Modern imaging sensors offer the necessary spatial and spectral information to tackle a wide range problems through Earth Observation, such as land cover and use updating, urban dynamics, or vegetation and crop monitoring. In the upcoming years even richer information will be available: more sophisticated hyperspectral sensors with high spectral resolution, multispectral sensors with sub-metric spatial detail or drones that can be deployed in very short time lapses. Besides such opportunities, these new and wealthy infor…