Search results for "kernel"

showing 10 items of 357 documents

Learning Improved Feature Rankings through Decremental Input Pruning for Support Vector Based Drug Activity Prediction

2010

The use of certain machine learning and pattern recognition tools for automated pharmacological drug design has been recently introduced. Different families of learning algorithms and Support Vector Machines in particular have been applied to the task of associating observed chemical properties and pharmacological activities to certain kinds of representations of the candidate compounds. The purpose of this work, is to select an appropriate feature ordering from a large set of molecular descriptors usually used in the domain of Drug Activity Characterization. To this end, a new input pruning method is introduced and assessed with respect to commonly used feature ranking algorithms.

Computer scienceActive learning (machine learning)business.industryFeature vectorPattern recognitionMachine learningcomputer.software_genreKernel methodComputational learning theoryRanking SVMFeature (machine learning)Artificial intelligencePruning (decision trees)businessFeature learningcomputer
researchProduct

Highlighting numerical insights of an efficient SPH method

2018

Abstract In this paper we focus on two sources of enhancement in accuracy and computational demanding in approximating a function and its derivatives by means of the Smoothed Particle Hydrodynamics method. The approximating power of the standard method is perceived to be poor and improvements can be gained making use of the Taylor series expansion of the kernel approximation of the function and its derivatives. The modified formulation is appealing providing more accurate results of the function and its derivatives simultaneously without changing the kernel function adopted in the computation. The request for greater accuracy needs kernel function derivatives with order up to the desidered …

Computer scienceApplied MathematicsGaussianComputation010103 numerical & computational mathematicsFunction (mathematics)01 natural sciences010101 applied mathematicsSmoothed-particle hydrodynamicsComputational Mathematicssymbols.namesakeSettore MAT/08 - Analisi NumericaKernel based methods Smoothed Particle Hydrodynamics Accuracy Convergence Improved fast Gaussian transform.Convergence (routing)symbolsTaylor seriesGaussian function0101 mathematicsFocus (optics)Algorithm
researchProduct

Fake Nodes approximation for Magnetic Particle Imaging

2020

Accurately reconstructing functions with discontinuities is the key tool in many bio-imaging applications as, for instance, in Magnetic Particle Imaging (MPI). In this paper, we apply a method for scattered data interpolation, named mapped bases or Fake Nodes approach, which incorporates discontinuities via a suitable mapping function. This technique naturally mitigates the Gibbs phenomenon, as numerical evidence for reconstructing MPI images confirms.

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONradial basis functionsFunction (mathematics)Magnetic Particle ImagingClassification of discontinuitieskernelsinterpolationGibbs phenomenonSettore MAT/08 - Analisi Numericasymbols.namesakeMagnetic particle imagingsymbolsKey (cryptography)Radial basis functioninterpolation; kernels; Magnetic Particle Imaging; radial basis functionsGFadial basis functionAlgorithmComputingMethodologies_COMPUTERGRAPHICSInterpolation2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)
researchProduct

Least-squares community extraction in feature-rich networks using similarity data

2021

We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and intensity weight(s) over the network each. Our least-squares additive criterion allows us to search for communities one-by-one and to find each community by adding entities one by one. A focus of this paper is that the feature-space data part is converted into a similarity matrix format. The similarity/link values can be used in either of two modes: (a) as measured in the same scale so that one may …

Computer scienceEconomicsKernel FunctionsSocial Sciences02 engineering and technologyLeast squaresInfographicsTranslocation GeneticGeographical LocationsMedical Conditions0202 electrical engineering electronic engineering information engineeringMedicine and Health SciencesPsychologyCluster AnalysisOperator TheoryData ManagementMultidisciplinaryApplied MathematicsSimulation and ModelingQRExperimental PsychologyEuropeFeature (computer vision)Research DesignPhysical SciencesMedicine020201 artificial intelligence & image processingGraphsAlgorithmsNetwork AnalysisNetwork analysisResearch ArticleComputer and Information SciencesScienceFeature vectorScale (descriptive set theory)Research and Analysis MethodsColumn (database)Similarity (network science)020204 information systemsParasitic DiseasesLeast-Squares AnalysisFeature databusiness.industryData VisualizationBiology and Life SciencesPattern recognitionTropical DiseasesEconomic AnalysisMalariaPeople and PlacesArtificial intelligencebusinessMathematicsPLoS ONE
researchProduct

Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

2008

The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…

Computer scienceFeature vectorData classificationcomputer.software_genreKernel (linear algebra)Composite kernelMultitemporal classificationElectrical and Electronic EngineeringSupport vector domain description (SVDD)Remote sensingTelecomunicacionesSupport vector machinesContextual image classificationbusiness.industryKernel methodsPattern recognitionSupport vector machineKernel methodKernel (image processing)Change detectionGeneral Earth and Planetary Sciences3325 Tecnología de las TelecomunicacionesArtificial intelligenceData miningInformation fusionbusinessMultisourcecomputerChange detectionIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Filter Bank: a Directional Approach for Retinal Vessel Segmentation

2017

It is well known that retinal diseases are sometimes identified by tortuosity of the vessels, presence of exudates and hemorrhages while lesions of tissues are associated to diabetic retinopathy, retinopathy of prematurity and more general cerebrovascular problems. One of the main issues in this research field is detecting small curvilinear structures, thus the aim of this contribution is to introduce a non-supervised and automated methodology to detect features such as curvilinear structures in retinal images. The core of the proposed methodology consists in using an approach that resembles the “a trous” wavelet algorithm. With respect to the standard Gabor analysis our methodology is base…

Computer scienceGaussianBiomedical Engineering02 engineering and technologyfundus oculiTortuosity030218 nuclear medicine & medical imaging03 medical and health scienceschemistry.chemical_compoundsymbols.namesake0302 clinical medicinedirectional mapArtificial Intelligence0202 electrical engineering electronic engineering information engineeringmedicineSegmentation1707Health InformaticRetinaSignal processingSettore INF/01 - Informaticabusiness.industryRetinopathy of prematurityRetinalPattern recognitionImage segmentationDiabetic retinopathymedicine.diseaseFilter bankmedicine.anatomical_structureComputer Networks and CommunicationKernel (image processing)chemistryElliptical Gaussian filterSignal Processingsymbols020201 artificial intelligence & image processingretinal vesselArtificial intelligencebusinessRetinopathy
researchProduct

Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data

2019

In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…

Computer scienceInfrared Atmospheric Sounding Interferometer (IASI)Spectral Transforms0211 other engineering and technologies02 engineering and technologyData_CODINGANDINFORMATIONTHEORYLossy compressionInfrared atmospheric sounding interferometer (IASI)Kernel MethodsElectrical and Electronic EngineeringTransform coding021101 geological & geomatics engineeringbusiness.industryDimensionality reductionLossy CompressionJPEG 2000Kernel methodsPattern recognitioncomputer.file_formatJoint Photographic Experts Group (JPEG) 2000RegressionUncompressed videoSpectral transformsKernel methodStatistically based retrievalJPEG 2000General Earth and Planetary SciencesLossy compressionArtificial intelligencebusinessStatistically Based RetrievalcomputerSmoothingIEEE Transactions on Geoscience and Remote Sensing
researchProduct

Identification of differential risk hotspots for collision and vehicle type in a directed linear network

2019

Traffic accidents can take place in very different ways and involve a substantially distinct number and types of vehicles. Thus, it is of interest to know which parts of a road structure present an overrepresentation of a specific type of traffic accident, specially for some typologies of collisions and vehicles that tend to trigger more severe consequences for the users being involved. In this study, a spatial approach is followed to estimate the risk that different types of collisions and vehicles present in the central area of Valencia (Spain), considering the accidents observed in this city during the period 2014-2017. A directed spatial linear network representing the non-pedestrian ro…

Computer scienceKernel density estimationPoison controlHuman Factors and Ergonomicscomputer.software_genreRisk Assessment0502 economics and businessHumans0501 psychology and cognitive sciencesBuilt EnvironmentSafety Risk Reliability and QualitySpatial analysis050107 human factorsSpatial Analysis050210 logistics & transportation05 social sciencesAccidents TrafficPublic Health Environmental and Occupational HealthDifferential (mechanical device)CollisionMotor VehiclesIdentification (information)SpainSample size determinationData miningRisk assessmentMonte Carlo MethodcomputerAccident Analysis & Prevention
researchProduct

A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

2014

Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…

Computer scienceLand coverimaging spectrometrysub-pixel mappingKernel (linear algebra)urban land coverPartial least squares regressionlcsh:Sciencespatial resolutionHyMapRemote sensingmachine learning; regression; sub-pixel mapping; spatial resolution; imaging spectrometry; hyperspectral; urban land coverTraining setArtificial neural networkbusiness.industryHyperspectral imagingPattern recognitionRandom forestSupport vector machineKernel methodmachine learninghyperspectralKernel (statistics)General Earth and Planetary Sciencesregressionlcsh:QArtificial intelligencebusinessRemote Sensing
researchProduct

Structured Output SVM for Remote Sensing Image Classification

2011

Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…

Computer scienceMultispectral imageTheoretical Computer ScienceSet (abstract data type)Kernel (linear algebra)One-class classificationRemote sensingSupport vector machinesStructured support vector machinePixelContextual image classificationbusiness.industryKernel methodsPattern recognitionLand use classificationSupport vector machineTree (data structure)Kernel methodHardware and ArchitectureControl and Systems EngineeringModeling and SimulationKernel (statistics)Radial basis function kernelSignal ProcessingStructured output learningArtificial intelligenceTree kernelStructured output learning; Support vector machines; Kernel methods; Land use classificationbusinessInformation SystemsJournal of Signal Processing Systems
researchProduct