Search results for "kernel"
showing 10 items of 357 documents
Learning Improved Feature Rankings through Decremental Input Pruning for Support Vector Based Drug Activity Prediction
2010
The use of certain machine learning and pattern recognition tools for automated pharmacological drug design has been recently introduced. Different families of learning algorithms and Support Vector Machines in particular have been applied to the task of associating observed chemical properties and pharmacological activities to certain kinds of representations of the candidate compounds. The purpose of this work, is to select an appropriate feature ordering from a large set of molecular descriptors usually used in the domain of Drug Activity Characterization. To this end, a new input pruning method is introduced and assessed with respect to commonly used feature ranking algorithms.
Highlighting numerical insights of an efficient SPH method
2018
Abstract In this paper we focus on two sources of enhancement in accuracy and computational demanding in approximating a function and its derivatives by means of the Smoothed Particle Hydrodynamics method. The approximating power of the standard method is perceived to be poor and improvements can be gained making use of the Taylor series expansion of the kernel approximation of the function and its derivatives. The modified formulation is appealing providing more accurate results of the function and its derivatives simultaneously without changing the kernel function adopted in the computation. The request for greater accuracy needs kernel function derivatives with order up to the desidered …
Fake Nodes approximation for Magnetic Particle Imaging
2020
Accurately reconstructing functions with discontinuities is the key tool in many bio-imaging applications as, for instance, in Magnetic Particle Imaging (MPI). In this paper, we apply a method for scattered data interpolation, named mapped bases or Fake Nodes approach, which incorporates discontinuities via a suitable mapping function. This technique naturally mitigates the Gibbs phenomenon, as numerical evidence for reconstructing MPI images confirms.
Least-squares community extraction in feature-rich networks using similarity data
2021
We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and intensity weight(s) over the network each. Our least-squares additive criterion allows us to search for communities one-by-one and to find each community by adding entities one by one. A focus of this paper is that the feature-space data part is converted into a similarity matrix format. The similarity/link values can be used in either of two modes: (a) as measured in the same scale so that one may …
Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection
2008
The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…
Filter Bank: a Directional Approach for Retinal Vessel Segmentation
2017
It is well known that retinal diseases are sometimes identified by tortuosity of the vessels, presence of exudates and hemorrhages while lesions of tissues are associated to diabetic retinopathy, retinopathy of prematurity and more general cerebrovascular problems. One of the main issues in this research field is detecting small curvilinear structures, thus the aim of this contribution is to introduce a non-supervised and automated methodology to detect features such as curvilinear structures in retinal images. The core of the proposed methodology consists in using an approach that resembles the “a trous” wavelet algorithm. With respect to the standard Gabor analysis our methodology is base…
Improved Statistically Based Retrievals via Spatial-Spectral Data Compression for IASI Data
2019
In this paper, we analyze the effect of spatial and spectral compression on the performance of statistically based retrieval. Although the quality of the information is not com- pletely preserved during the coding process, experiments reveal that a certain amount of compression may yield a positive impact on the accuracy of retrievals. We unveil two strategies, both with interesting benefits: either to apply a very high compression, which still maintains the same retrieval performance as that obtained for uncompressed data; or to apply a moderate to high compression, which improves the performance. As a second contribution of this paper, we focus on the origins of these benefits. On the one…
Identification of differential risk hotspots for collision and vehicle type in a directed linear network
2019
Traffic accidents can take place in very different ways and involve a substantially distinct number and types of vehicles. Thus, it is of interest to know which parts of a road structure present an overrepresentation of a specific type of traffic accident, specially for some typologies of collisions and vehicles that tend to trigger more severe consequences for the users being involved. In this study, a spatial approach is followed to estimate the risk that different types of collisions and vehicles present in the central area of Valencia (Spain), considering the accidents observed in this city during the period 2014-2017. A directed spatial linear network representing the non-pedestrian ro…
A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover
2014
Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…
Structured Output SVM for Remote Sensing Image Classification
2011
Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…