Search results for "kinetic Monte Carlo"

showing 10 items of 51 documents

Dynamics of molybdenum nano structure formation on the TiO2(110) surface: A kinetic Monte Carlo approach

2006

Abstract The rutile TiO 2 (1 1 0) surface is a highly anisotropic surface exhibiting “channels” delimited by oxygen rows. In previous experimental and theoretical DFT works we could identify the molybdenum adsorption sites. They are located inside the channels. Moreover, experimental studies have shown that during subsequent annealing after deposition, special molybdenum nano structures can be formed, especially two monolayer high pyramidal chains of atoms. In order to better understand the dynamics of nano structure formation, we present a kinetic Monte Carlo study on diffusion and adsorption of molybdenum atoms on a TiO 2 (1 1 0) surface. A quasi one-dimensional lattice gas model has been…

General Physics and Astronomychemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsSurfaces Coatings and FilmsSurface coatingAdsorptionchemistryChemical physicsMolybdenumPhysical vapor depositionMonolayerNano-Cluster (physics)Physical chemistryKinetic Monte CarloApplied Surface Science
researchProduct

Off-lattice models

2005

Hybrid Monte CarloMaterials scienceCondensed matter physicsChemistryLattice (order)Monte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsStatistical physicsDirect simulation Monte CarloKinetic Monte CarloParticle filterMonte Carlo molecular modeling
researchProduct

A Monte Carlo Simulation of the Stillinger-Weber Model for Si-Ge Alloys

1994

ABSTRACTThe bulk phase behavior of silicon-germanium alloys is investigated by means of a constant pressure Monte Carlo simulation of the Stillinger-Weber potential in the semi-grand-canonical ensemble. At low temperatures, Si and Ge phase separate into a Si-rich phase and a Ge-rich phase. The two-phase region is terminated by a critical point whose nature is investigated thoroughly by the multihistogram method combined with finite size scaling analysis. These results showed that the critical behavior of the alloy belongs to the mean field universality class, presumably due to the elastic degrees of freedom. We have also studied the structural properties of the mixture and found that the li…

Hybrid Monte CarloMaterials scienceCondensed matter physicsCritical point (thermodynamics)Monte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsDirect simulation Monte CarloKinetic Monte CarloMonte Carlo molecular modelingMRS Proceedings
researchProduct

Analysis of multilayer adsorption models without screening

1991

A class of recently introduced irreversible multilayer adsorption models without screening is analysed. The basic kinetic process of these models leads to power law behaviour for the decay of the jamming coverage as a function of height. The authors find the exact value for the power law exponent. An approximate analytical treatment of these models and previous Monte Carlo simulations are found to be in good agreement.

Hybrid Monte CarloMaterials scienceMonte Carlo methodDynamic Monte Carlo methodGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMonte Carlo method in statistical physicsStatistical physicsKinetic Monte CarloDirect simulation Monte CarloPower lawMathematical PhysicsMonte Carlo molecular modelingJournal of Physics A: Mathematical and General
researchProduct

Crossover scaling in semidilute polymer solutions: a Monte Carlo test

1991

Hybrid Monte CarloMaterials sciencePhysics and Astronomy (miscellaneous)CrossoverGeneral EngineeringDynamic Monte Carlo methodMonte Carlo method in statistical physicsParallel temperingKinetic Monte CarloDirect simulation Monte CarloStatistical physicsAtomic and Molecular Physics and OpticsMonte Carlo molecular modelingJournal de Physique II
researchProduct

Monte Carlo test of the self-consistent field theory of a polymer brush

1992

Hybrid Monte CarloMonte carlo testMaterials sciencePhysics and Astronomy (miscellaneous)General EngineeringDynamic Monte Carlo methodField theory (psychology)Monte Carlo method in statistical physicsStatistical physicsKinetic Monte CarloPolymer brushAtomic and Molecular Physics and OpticsMonte Carlo molecular modelingJournal de Physique II
researchProduct

Path-integral Monte Carlo study of crystalline Lennard-Jones systems.

1995

The capability of the path-integral Monte Carlo (PIMC) method to describe thermodynamic and structural properties of solids at low temperatures is studied in detail, considering the noble-gas crystals as examples. In order to reduce the systematic limitations due to finite Trotter number and finite particle number we propose a combined Trotter and finite-size scaling. As a special application of the PIMC method we investigate $^{40}\mathrm{Ar}$ at constant volume and in the harmonic approximation. Furthermore, isotope effects in the lattice constant of $^{20}\mathrm{Ne}$ and $^{22}\mathrm{Ne}$ are computed at zero pressure. The obtained results are compared with classical Monte Carlo result…

Hybrid Monte CarloPhysicsQuantum Monte CarloMonte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsKinetic Monte CarloStatistical physicsMolecular physicsPath integral Monte CarloMonte Carlo molecular modelingPhysical review. B, Condensed matter
researchProduct

Molecular-Level Characterization of Heterogeneous Catalytic Systems by Algorithmic Time Dependent Monte Carlo

2009

Monte Carlo algorithms and codes, used to study heterogeneous catalytic systems in the frame of the computational section of the NANOCAT project, are presented along with some exemplifying applications and results. In particular, time dependent Monte Carlo methods supported by high level quantum chemical information employed in the field of heterogeneous catalysis are focused. Technical details of the present algorithmic Monte Carlo development as well as possible evolution aimed at a deeper interrelationship of quantum and stochastic methods are discussed, pointing to two different aspects: the thermal-effect involvement and the three-dimensional catalytic matrix simulation. As topical app…

Hybrid Monte CarloTDMC catalytic propertiesChemistryMonte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsGeneral ChemistryStatistical physicsParallel temperingKinetic Monte CarloHeterogeneous catalysisCatalysisMonte Carlo molecular modelingTopics in Catalysis
researchProduct

Au nanowire junction breakup through surface atom diffusion.

2018

Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 degrees C, 400 degrees C, 600 degrees C and 700 degrees C) during a time period of 10 min. We show that nanowires are especially prone to fragmentatio…

Materials scienceAnnealing (metallurgy)NanowireFOS: Physical sciencesBioengineering02 engineering and technology010402 general chemistry01 natural sciences114 Physical sciencesMetalGeneral Materials ScienceKinetic Monte CarloElectrical and Electronic EngineeringElectrical conductorSurface diffusionCondensed Matter - Materials Sciencebusiness.industryMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyBreakup0104 chemical sciencesMechanics of Materialsvisual_artvisual_art.visual_art_mediumOptoelectronicsNanodot0210 nano-technologybusinessNanotechnology
researchProduct

Modeling epitaxial film growth of C$_{60}$ revisited

2020

Epitaxial films evolve on time and length scales that are inaccessible to atomistic computer simulation methods like molecular dynamics (MD). To numerically predict properties for such systems, a common strategy is to employ kinetic Monte Carlo simulations, for which one needs to know the transition rates of the involved elementary steps. The main challenge is thus to formulate a consistent model for the set of transition rates and to determine its parameters. Here, we revisit a well-studied model system, the epitaxial film growth of the fullerene ${\mathrm{C}}_{60}$ on an ordered ${\mathrm{C}}_{60}$ substrate (111). We implement a systematic multiscale approach in which we determine transi…

Materials scienceFullereneFOS: Physical sciences02 engineering and technologySubstrate (electronics)01 natural sciencessymbols.namesakeMolecular dynamicsCondensed Matter::Materials Science0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Kinetic Monte Carlo010306 general physicsArrhenius equationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)Detailed balanceComputational Physics (physics.comp-ph)021001 nanoscience & nanotechnologysymbolsSubatomic particle0210 nano-technologyPhysics - Computational PhysicsEnergy (signal processing)
researchProduct