Search results for "kinetic Monte Carlo"
showing 10 items of 51 documents
Dynamics of molybdenum nano structure formation on the TiO2(110) surface: A kinetic Monte Carlo approach
2006
Abstract The rutile TiO 2 (1 1 0) surface is a highly anisotropic surface exhibiting “channels” delimited by oxygen rows. In previous experimental and theoretical DFT works we could identify the molybdenum adsorption sites. They are located inside the channels. Moreover, experimental studies have shown that during subsequent annealing after deposition, special molybdenum nano structures can be formed, especially two monolayer high pyramidal chains of atoms. In order to better understand the dynamics of nano structure formation, we present a kinetic Monte Carlo study on diffusion and adsorption of molybdenum atoms on a TiO 2 (1 1 0) surface. A quasi one-dimensional lattice gas model has been…
Off-lattice models
2005
A Monte Carlo Simulation of the Stillinger-Weber Model for Si-Ge Alloys
1994
ABSTRACTThe bulk phase behavior of silicon-germanium alloys is investigated by means of a constant pressure Monte Carlo simulation of the Stillinger-Weber potential in the semi-grand-canonical ensemble. At low temperatures, Si and Ge phase separate into a Si-rich phase and a Ge-rich phase. The two-phase region is terminated by a critical point whose nature is investigated thoroughly by the multihistogram method combined with finite size scaling analysis. These results showed that the critical behavior of the alloy belongs to the mean field universality class, presumably due to the elastic degrees of freedom. We have also studied the structural properties of the mixture and found that the li…
Analysis of multilayer adsorption models without screening
1991
A class of recently introduced irreversible multilayer adsorption models without screening is analysed. The basic kinetic process of these models leads to power law behaviour for the decay of the jamming coverage as a function of height. The authors find the exact value for the power law exponent. An approximate analytical treatment of these models and previous Monte Carlo simulations are found to be in good agreement.
Crossover scaling in semidilute polymer solutions: a Monte Carlo test
1991
Monte Carlo test of the self-consistent field theory of a polymer brush
1992
Path-integral Monte Carlo study of crystalline Lennard-Jones systems.
1995
The capability of the path-integral Monte Carlo (PIMC) method to describe thermodynamic and structural properties of solids at low temperatures is studied in detail, considering the noble-gas crystals as examples. In order to reduce the systematic limitations due to finite Trotter number and finite particle number we propose a combined Trotter and finite-size scaling. As a special application of the PIMC method we investigate $^{40}\mathrm{Ar}$ at constant volume and in the harmonic approximation. Furthermore, isotope effects in the lattice constant of $^{20}\mathrm{Ne}$ and $^{22}\mathrm{Ne}$ are computed at zero pressure. The obtained results are compared with classical Monte Carlo result…
Molecular-Level Characterization of Heterogeneous Catalytic Systems by Algorithmic Time Dependent Monte Carlo
2009
Monte Carlo algorithms and codes, used to study heterogeneous catalytic systems in the frame of the computational section of the NANOCAT project, are presented along with some exemplifying applications and results. In particular, time dependent Monte Carlo methods supported by high level quantum chemical information employed in the field of heterogeneous catalysis are focused. Technical details of the present algorithmic Monte Carlo development as well as possible evolution aimed at a deeper interrelationship of quantum and stochastic methods are discussed, pointing to two different aspects: the thermal-effect involvement and the three-dimensional catalytic matrix simulation. As topical app…
Au nanowire junction breakup through surface atom diffusion.
2018
Metallic nanowires are known to break into shorter fragments due to the Rayleigh instability mechanism. This process is strongly accelerated at elevated temperatures and can completely hinder the functioning of nanowire-based devices like e.g. transparent conductive and flexible coatings. At the same time, arranged gold nanodots have important applications in electrochemical sensors. In this paper we perform a series of annealing experiments of gold and silver nanowires and nanowire junctions at fixed temperatures 473, 673, 873 and 973 K (200 degrees C, 400 degrees C, 600 degrees C and 700 degrees C) during a time period of 10 min. We show that nanowires are especially prone to fragmentatio…
Modeling epitaxial film growth of C$_{60}$ revisited
2020
Epitaxial films evolve on time and length scales that are inaccessible to atomistic computer simulation methods like molecular dynamics (MD). To numerically predict properties for such systems, a common strategy is to employ kinetic Monte Carlo simulations, for which one needs to know the transition rates of the involved elementary steps. The main challenge is thus to formulate a consistent model for the set of transition rates and to determine its parameters. Here, we revisit a well-studied model system, the epitaxial film growth of the fullerene ${\mathrm{C}}_{60}$ on an ordered ${\mathrm{C}}_{60}$ substrate (111). We implement a systematic multiscale approach in which we determine transi…