Search results for "kvanttifysiikka"

showing 10 items of 55 documents

Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field

2018

This Colloquium discusses the recent progress in understanding the properties of spin-split superconductors under nonequilibrium conditions. Recent experiments and theories demonstrate a rich variety of transport phenomena occurring in devices based on such materials that suggest direct applications in thermoelectricity, low-dissipative spintronics, radiation detection, and sensing. This text discusses different experimental situations and presents a theoretical framework based on quantum kinetic equations. This framework provides an accurate description of the nonequilibrium distribution of charge, spin, and energy, which are the relevant nonequilibrium modes, in different hybrid structure…

---General Physics and AstronomyLibrary scienceFOS: Physical sciences02 engineering and technologysuperconductors01 natural sciences7. Clean energysuprajohteetSuperconductivity (cond-mat.supr-con)Spin splitting0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)media_common.cataloged_instanceEuropean union010306 general physicskvanttifysiikkamedia_commonPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityEuropean research021001 nanoscience & nanotechnologyquantum physicsCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit

2019

Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.

010302 applied physicsSteady state (electronics)Statistical Mechanics (cond-mat.stat-mech)non-equilibrium Green's functionsFOS: Physical sciences02 engineering and technologyPositive-definite matrix021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsDiagrammatic reasoningspectral propertiesFrequency domainProduct (mathematics)0103 physical sciencesApplied mathematicsLimit (mathematics)Perturbation theory (quantum mechanics)0210 nano-technologyRepresentation (mathematics)kvanttifysiikkaCondensed Matter - Statistical MechanicsMathematicsperturbation theory
researchProduct

Many-body Green's function theory of electrons and nuclei beyond the Born-Oppenheimer approximation

2020

The method of many-body Green's functions is developed for arbitrary systems of electrons and nuclei starting from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory presented here resolves the problems arising from the translational and rotational invariance of this Hamiltonian that afflict the existing many-body Green's function theories. We derive a coupled set of exact equations for the electronic and nuclear Green's functions and provide a systematic way to approximately compute the properties of arbitrary many-body systems of electrons and nuclei beyond the Born-Oppenheimer approximation. The case of crystalline solids is discussed …

Born–Oppenheimer approximationFOS: Physical sciences02 engineering and technologyElectronKinetic energy01 natural sciencesMany bodytiiviin aineen fysiikkaGreen's function methodssymbols.namesake0103 physical sciencesCoulombkvanttifysiikka010306 general physicsPhysicsQuantum PhysicsExact differential equation021001 nanoscience & nanotechnologyMany-body techniquesCondensed Matter - Other Condensed MatterClassical mechanicssymbolsRotational invarianceCrystalline systemsapproksimointiQuantum Physics (quant-ph)0210 nano-technologyHamiltonian (quantum mechanics)Other Condensed Matter (cond-mat.other)
researchProduct

Quantum interference and the time-dependent radiation of nanojunctions

2021

Using the recently developed time-dependent Landauer-B\"uttiker formalism and Jefimenko's retarded solutions to the Maxwell equations, we show how to compute the time-dependent electromagnetic field produced by the charge and current densities in nanojunctions out of equilibrium. We then apply this formalism to a benzene ring junction, and show that geometry-dependent quantum interference effects can be used to control the magnetic field in the vicinity of the molecule. Then, treating the molecular junction as a quantum emitter, we demonstrate clear signatures of the local molecular geometry in the non-local radiated power.

CURRENTSElectromagnetic field116 Chemical sciencesFOS: Physical sciences02 engineering and technologyEffective radiated power114 Physical sciences01 natural sciencesCARBONELECTRONICSsymbols.namesake0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)OSCILLATIONSkvanttifysiikka010306 general physicsPHOTONICSPhysicsCondensed Matter - Mesoscale and Nanoscale Physicsnanoelektroniikkabusiness.industryBIOT-SAVARTsähkömagneettiset kentätCharge (physics)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectTRANSPORT3. Good healthMagnetic fieldBiot–Savart lawMolecular geometryMaxwell's equationsQuantum electrodynamicsJUNCTIONsymbolsPhotonics0210 nano-technologybusiness
researchProduct

Theory for polaritonic quantum tunneling

2022

I investigate the tunneling decay rate of a polaritonic system formed by a strong coupling between a vacuum cavity mode and $N$ metastable systems. Using a simple model potential, I find the instanton solutions controlling the low-temperature tunneling rate. The resulting rate modification due to the cavity is proportional to the mean of the second power of the light-matter coupling. No collective effect that would enhance the rates by a factor of $\sqrt{N}$ is present, which is in line with the results in the thermal activation regime.

Chemical Physics (physics.chem-ph)Quantum PhysicsPhysics - Chemical PhysicsFOS: Physical scienceskvanttimekaniikkaQuantum Physics (quant-ph)kvanttifysiikkapolaritonit
researchProduct

Geometry of Degeneracy in Potential and Density Space

2022

In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg-Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising between density regions and the potentials that create them is analyzed and explained with examples that, amo…

Chemical Physics (physics.chem-ph)Quantum Physicschemical physicsPhysics and Astronomy (miscellaneous)FOS: Physical sciencesmatemaattinen fysiikkaMathematical Physics (math-ph)Atomic and Molecular Physics and Opticsmathematical physicsquantum physicsPhysics - Chemical PhysicskvanttifysiikkaQuantum Physics (quant-ph)Mathematical Physics
researchProduct

Time-linear scaling nonequilibrium Green's function method for real-time simulations of interacting electrons and bosons. II : Dynamics of polarons a…

2022

Nonequilibrium dynamics of the open chain Holstein-Hubbard model is studied using the linear time-scaling GKBA+ODE scheme developed in Pavlyukh et al. [Phys. Rev. B 105, 125134 (2022)]. We focus on the set of parameters relevant for photovoltaic materials, i.e., a pair of electrons interacting with phonons at the crossover between the adiabatic and antiadiabatic regimes and at moderately large electron-electron interaction. By comparing with exact solutions for two corner cases, we demonstrate the accuracy of the T matrix (in the pp channel) and the second-order Fan (GD) approximations for the treatment of electronic (e−e) and electron-phonon (e-ph) correlations, respectively. The feedback …

Condensed Matter::Strongly Correlated Electronssimulointikvanttifysiikkaelektronitfononit
researchProduct

Theory for the stationary polariton response in the presence of vibrations

2019

We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…

DYNAMICSQuantum decoherenceFOS: Physical sciences02 engineering and technology01 natural sciencesplasmonicsvärähtelytQuantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Polaritonhybrid quantum systemskvanttikemiaMOLECULE010306 general physicskvanttifysiikkaQuantumQuantum opticsPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSurface plasmonCoulomb blockade021001 nanoscience & nanotechnologySurface plasmon polaritonSURFACE-PLASMON POLARITONSpintailmiötLight emission0210 nano-technologyQuantum Physics (quant-ph)ENERGY-TRANSFERpolaritonsemissio (fysiikka)
researchProduct

Synthetic electromagnetic knot in a three-dimensional skyrmion

2018

We experimentally simulate a quantum-mechanical particle interacting with knotted electromagnetic fields.

Electromagnetic fieldField (physics)skyrmionsQuantum Hall effect01 natural sciences010305 fluids & plasmasElectromagnetism0103 physical sciencesQuantum systemClassical electromagnetismknotted electromagnetic field structureskvanttifysiikka010306 general physicsQuantumResearch ArticlesSpin-½PhysicsMultidisciplinaryta114Physicssähkömagneettiset kentätBose-Einstein condensatesSciAdv r-articlesCondensed Matter PhysicsMathematics::Geometric TopologyClassical mechanicsResearch ArticleScience Advances
researchProduct

Polariton response in the presence of Brownian dissipation from molecular vibrations

2020

We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed "zero-detuning" point. Using a rather generi…

Field (physics)ExcitonGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Optics010402 general chemistry01 natural sciencesMolecular physicsLaser linewidthmolecular vibrations0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PolaritonPhysical and Theoretical ChemistrykvanttifysiikkapolaritonitBrownian motionPhysicsQuantum Physics010304 chemical physicsCondensed Matter - Mesoscale and Nanoscale PhysicsDissipationkvasihiukkaset0104 chemical sciences3. Good healthVibrationmolekyylifysiikkaMolecular vibrationQuantum Physics (quant-ph)
researchProduct