Search results for "kvanttifysiikka"
showing 10 items of 55 documents
Colloquium: Nonequilibrium effects in superconductors with a spin-splitting field
2018
This Colloquium discusses the recent progress in understanding the properties of spin-split superconductors under nonequilibrium conditions. Recent experiments and theories demonstrate a rich variety of transport phenomena occurring in devices based on such materials that suggest direct applications in thermoelectricity, low-dissipative spintronics, radiation detection, and sensing. This text discusses different experimental situations and presents a theoretical framework based on quantum kinetic equations. This framework provides an accurate description of the nonequilibrium distribution of charge, spin, and energy, which are the relevant nonequilibrium modes, in different hybrid structure…
Diagrammatic Expansion for Positive Spectral Functions in the Steady-State Limit
2019
Recently, a method was presented for constructing self-energies within many-body perturbation theory that are guaranteed to produce a positive spectral function for equilibrium systems, by representing the self-energy as a product of half-diagrams on the forward and backward branches of the Keldysh contour. We derive an alternative half-diagram representation that is based on products of retarded diagrams. Our approach extends the method to systems out of equilibrium. When a steady-state limit exists, we show that our approach yields a positive definite spectral function in the frequency domain.
Many-body Green's function theory of electrons and nuclei beyond the Born-Oppenheimer approximation
2020
The method of many-body Green's functions is developed for arbitrary systems of electrons and nuclei starting from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory presented here resolves the problems arising from the translational and rotational invariance of this Hamiltonian that afflict the existing many-body Green's function theories. We derive a coupled set of exact equations for the electronic and nuclear Green's functions and provide a systematic way to approximately compute the properties of arbitrary many-body systems of electrons and nuclei beyond the Born-Oppenheimer approximation. The case of crystalline solids is discussed …
Quantum interference and the time-dependent radiation of nanojunctions
2021
Using the recently developed time-dependent Landauer-B\"uttiker formalism and Jefimenko's retarded solutions to the Maxwell equations, we show how to compute the time-dependent electromagnetic field produced by the charge and current densities in nanojunctions out of equilibrium. We then apply this formalism to a benzene ring junction, and show that geometry-dependent quantum interference effects can be used to control the magnetic field in the vicinity of the molecule. Then, treating the molecular junction as a quantum emitter, we demonstrate clear signatures of the local molecular geometry in the non-local radiated power.
Theory for polaritonic quantum tunneling
2022
I investigate the tunneling decay rate of a polaritonic system formed by a strong coupling between a vacuum cavity mode and $N$ metastable systems. Using a simple model potential, I find the instanton solutions controlling the low-temperature tunneling rate. The resulting rate modification due to the cavity is proportional to the mean of the second power of the light-matter coupling. No collective effect that would enhance the rates by a factor of $\sqrt{N}$ is present, which is in line with the results in the thermal activation regime.
Geometry of Degeneracy in Potential and Density Space
2022
In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg-Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising between density regions and the potentials that create them is analyzed and explained with examples that, amo…
Time-linear scaling nonequilibrium Green's function method for real-time simulations of interacting electrons and bosons. II : Dynamics of polarons a…
2022
Nonequilibrium dynamics of the open chain Holstein-Hubbard model is studied using the linear time-scaling GKBA+ODE scheme developed in Pavlyukh et al. [Phys. Rev. B 105, 125134 (2022)]. We focus on the set of parameters relevant for photovoltaic materials, i.e., a pair of electrons interacting with phonons at the crossover between the adiabatic and antiadiabatic regimes and at moderately large electron-electron interaction. By comparing with exact solutions for two corner cases, we demonstrate the accuracy of the T matrix (in the pp channel) and the second-order Fan (GD) approximations for the treatment of electronic (e−e) and electron-phonon (e-ph) correlations, respectively. The feedback …
Theory for the stationary polariton response in the presence of vibrations
2019
We construct a model describing the response of a hybrid system where the electromagnetic field - in particular, surface plasmon polaritons - couples strongly with electronic excitations of atoms or molecules. Our approach is based on the input-output theory of quantum optics, and in particular it takes into account the thermal and quantum vibrations of the molecules. The latter is described within the $P(E)$ theory analogous to that used in the theory of dynamical Coulomb blockade. As a result, we are able to include the effect of the molecular Stokes shift on the strongly coupled response of the system. Our model then accounts for the asymmetric emission from upper and lower polariton mod…
Synthetic electromagnetic knot in a three-dimensional skyrmion
2018
We experimentally simulate a quantum-mechanical particle interacting with knotted electromagnetic fields.
Polariton response in the presence of Brownian dissipation from molecular vibrations
2020
We study the elastic response of a stationarily driven system of a cavity field strongly coupled with molecular excitons, taking into account the main dissipation channels due to the finite cavity linewidth and molecular vibrations. We show that the frequently used coupled oscillator model fails in describing this response especially due to the non-Lorentzian dissipation of the molecules to their vibrations. Signatures of this failure are the temperature dependent minimum point of the polariton peak splitting, uneven polariton peak height at the minimum splitting, and the asymmetric shape of the polariton peaks even at the experimentally accessed "zero-detuning" point. Using a rather generi…