Search results for "kvanttifysiikka"
showing 10 items of 55 documents
Experimental Quantum Probing Measurements With No Knowledge on the System-Probe Interaction
2020
In any natural science, measurements are the essential link between theory and observable reality. Is it possible to obtain accurate and relevant information via measurement whose action on the probed system is unknown? In other words, can one be convinced to know something about the nature without knowing in detail how the information was obtained? In this paper, we show that the answer is surprisingly, yes. We construct and experimentally implement a quantum optical probing measurement where measurements on the probes, the photons' polarization states, are used to extract information on the systems, the frequency spectra of the same photons. Unlike the pre-existing probing protocols, our …
Dynamically screened vertex correction to $GW$
2020
Diagrammatic perturbation theory is a powerful tool for the investigation of interacting many-body systems, the self-energy operator $\mathrm{\ensuremath{\Sigma}}$ encoding all the variety of scattering processes. In the simplest scenario of correlated electrons described by the $GW$ approximation for the electron self-energy, a particle transfers a part of its energy to neutral excitations. Higher-order (in screened Coulomb interaction $W$) self-energy diagrams lead to improved electron spectral functions (SFs) by taking more complicated scattering channels into account and by adding corrections to lower order self-energy terms. However, they also may lead to unphysical negative spectral f…
Simulation of matrix product states for dissipation and thermalization dynamics of open quantum systems
2020
Abstract We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain through unitary transformation to simulate the open quantum system numerically with the help of time evolving block decimation (TEBD) algorithm. We apply the method to study the dynamics of dissipative systems. We also generate the thermal state of a multimode bath using minimally entangled typical thermal state (METTS) algorithm, and investigate the impact of the thermal bath on an empty system. For both cases, we give an extensive analysis of the impact of the modeling and simulation parameters, and compare the numerics with the analytics.
Cross-Kerr nonlinearity: a stability analysis
2015
We analyse the combined effect of the radiation-pressure and cross-Kerr nonlinearity on the stationary solution of the dynamics of a nanomechanical resonator interacting with an electromagnetic cavity. Within this setup, we show how the optical bistability picture induced by the radiation-pressure force is modified by the presence of the cross-Kerr interaction term. More specifically, we show how the optically bistable region, characterising the pure radiation-pressure case, is reduced by the presence of a cross-Kerr coupling term. At the same time, the upper unstable branch is extended by the presence of a moderate cross-Kerr term, while it is reduced for larger values of the cross-Kerr co…
Use of a running coupling in the NLO calculation of forward hadron production
2018
We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…
Magnomechanics in suspended magnetic beams
2021
Cavity optomechanical systems have become a popular playground for studies of controllable nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended magnetic beam -- a scheme in…
Experimental realization of high-fidelity teleportation via a non-Markovian open quantum system
2020
Open quantum systems and study of decoherence are important for our fundamental understanding of quantum physical phenomena. For practical purposes, a large number of quantum protocols exist that exploit quantum resources, e.g., entanglement, which allows us to go beyond what is possible to achieve by classical means. We combine concepts from open quantum systems and quantum information science and give a proof-of-principle experimental demonstration-with teleportation-that it is possible to implement efficiently a quantum protocol via a non-Markovian open system. The results show that, at the time of implementation of the protocol, it is not necessary to have the quantum resource in the de…
State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses
2018
Pulsed optomechanical measurements enable squeezing, non-classical state creation and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large photon-phonon coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude $x_\mathrm{zpf}$. We study the effect of other mechanical modes which limit the conditional state width to 58 $x_\mathrm{zpf}$, and show how decoherence causes the state to…
Scattering off the color glass condensate
2015
In this thesis the Color Glass Condensate (CGC) framework, which describes quantum chromodynamics (QCD) at high energy, is applied to various scat- tering processes. Higher order corrections to the CGC evolution equations, known as the BK and JIMWLK equations, are also considered. It is shown that the leading order CGC calculations describe the experimen- tal data from electron-proton deep inelastic scattering (DIS), proton-proton and proton-nucleus collisions. The initial condition for the BK evolution equation is obtained by performing a fit to deep inelastic scattering data. The fit result is used as an input to calculations of single particle spectra and nuclear suppression in proton-prot…
Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole
2017
We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.