Search results for "lattice gas"
showing 10 items of 82 documents
Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states
2017
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on: (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according with local rules that are modulated by a parameter $\kappa$. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate e…
Data for: Analytical induced force solution in conducting cylindrical bodies and rings due to a rotating finite permanent magnet
2019
Implementation of analytical current density solution in numerical calculations using Wolfram Mathematica software. THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOVE
Cardinal invariants of cellular Lindelof spaces
2018
A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…
Research of Complex Forms in Cellular Automata by Evolutionary Algorithms
2004
This paper presents an evolutionary approach for the search for new complex cellular automata. Two evolutionary algorithms are used: the first one discovers rules supporting gliders and periodic patterns, and the second one discovers glider guns in cellular automata. An automaton allowing us to simulate AND and NOT gates is discovered. The results are a step toward the general simulation of Boolean circuits by this automaton and show that the evolutionary approach is a promising technic for searching for cellular automata that support universal computation.
A New Universal Cellular Automaton Discovered by Evolutionary Algorithms
2004
In Twenty Problems in the Theory of Cellular Automata, Stephen Wolfram asks “how common computational universality and undecidability [are] in cellular automata.” This papers provides elements of answer, as it describes how another universal cellular automaton than the Game of Life (Life) was sought and found using evolutionary algorithms. This paper includes a demonstration that consists in showing that the presented R automaton can both implement any logic circuit (logic universality) and a simulation of Life (universality in the Turing sense).
Modeling Local Social Migrations: A Cellular Automata Approach
2015
In local social migrations, agents move from their initial location looking for a better local social environment. Social migrations processes do not change the number of social agents of a given type (i.e., the empirical distribution of the population) but their spatial location. Although cellular automata seems to appear as a natural approach to model of social migrations, the evolution of the configuration through a cellular automata might induce a new configuration wherein the number of agents of each type might be actually modified. This article provides a characterization of these cellular automata rules such that for any initial empirical distribution, the evolution of the configurat…
Super-Exponential Size Advantage of Quantum Finite Automata with Mixed States
2008
Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A.Ambainis and R.Freivalds that quantum finite automata with pure states can have exponentially smaller number of states than deterministic finite automata recognizing the same language. There was a never published "folk theorem" proving that quantum finite automata with mixed states are no more than super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We use a novel proof technique based on Kolmogorov complex…
Reduction of the number of spectral bands in Landsat images: a comparison of linear and nonlinear methods
2006
We describe some applications of linear and nonlinear pro- jection methods in order to reduce the number of spectral bands in Land- sat multispectral images. The nonlinear method is curvilinear component analysis CCA, and we propose an adapted optimization of it for image processing, based on the use of principal-component analysis PCA, a linear method. The principle of CCA consists in reproducing the topol- ogy of the original space projection points in a reduced subspace, keep- ing the maximum of information. Our conclusions are: CCA is an im- provement for dimension reduction of multispectral images; CCA is really a nonlinear extension of PCA; CCA optimization through PCA called CCAinitP…
An efficient swap algorithm for the lattice Boltzmann method
2007
During the last decade, the lattice-Boltzmann method (LBM) as a valuable tool in computational fluid dynamics has been increasingly acknowledged. The widespread application of LBM is partly due to the simplicity of its coding. The most well-known algorithms for the implementation of the standard lattice-Boltzmann equation (LBE) are the two-lattice and two-step algorithms. However, implementations of the two-lattice or the two-step algorithm suffer from high memory consumption or poor computational performance, respectively. Ultimately, the computing resources available decide which of the two disadvantages is more critical. Here we introduce a new algorithm, called the swap algorithm, for t…
Parallelization of Cellular Automata for Surface Reactions
2002
We present a parallel implementation of cellular automata to simulate chemical reactions on surfaces. The scaling of the computer time with the number of processors for this parallel implementation is quite close to the ideal T/P, where T is the computer time used for one single processor and P the number of processors. Two examples are presented to test the algorithm, the simple A+B->0 model and a realistic model for CO oxidation on Pt(110). By using large parallel simulations, it is possible to derive scaling laws which allow us to extrapolate to even larger system sizes and faster diffusion coefficients allowing us to make direct comparisons with experiments.