Search results for "lattice gas"
showing 10 items of 82 documents
Mixed-Valence Magnetic Molecular Cell for Quantum Cellular Automata: Prospects of Designing Multifunctional Devices through Exploration of Double Exc…
2020
In this article, we propose to use multielectron square-planar mixed-valence (MV) molecules as molecular cells for quantum cellular automata (QCA) devices. As distinguished from previous proposals ...
Kinetic model for steady heat flow
1986
We construct a consistent solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation describing a system in a steady state with constant pressure and nonuniform temperature. The thermal profile is not linear and depends on the interaction potential. All the moments of the distribution function are given as polynomials in the local thermal gradient. In particular, the heat flux always obeys the (linear) Fourier law.
Relative importance of second-order terms in relativistic dissipative fluid dynamics
2014
[Introduction] In Denicol et al. [Phys. Rev. D 85 , 114047 (2012)], the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in the Knudsen number, in the inverse Reynolds number, or their product. Terms of second order in the Knudsen number give rise to nonhyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massl…
On the Size Complexity of Deterministic Frequency Automata
2013
Austinat, Diekert, Hertrampf, and Petersen [2] proved that every language L that is (m,n)-recognizable by a deterministic frequency automaton such that m > n/2 can be recognized by a deterministic finite automaton as well. First, the size of deterministic frequency automata and of deterministic finite automata recognizing the same language is compared. Then approximations of a language are considered, where a language L′ is called an approximation of a language L if L′ differs from L in only a finite number of strings. We prove that if a deterministic frequency automaton has k states and (m,n)-recognizes a language L, where m > n/2, then there is a language L′ approximating L such that L′ c…
Unifying vectors and matrices of different dimensions through nonlinear embeddings
2020
Complex systems may morph between structures with different dimensionality and degrees of freedom. As a tool for their modelling, nonlinear embeddings are introduced that encompass objects with different dimensionality as a continuous parameter $\kappa \in \mathbb{R}$ is being varied, thus allowing the unification of vectors, matrices and tensors in single mathematical structures. This technique is applied to construct warped models in the passage from supergravity in 10 or 11-dimensional spacetimes to 4-dimensional ones. We also show how nonlinear embeddings can be used to connect cellular automata (CAs) to coupled map lattices (CMLs) and to nonlinear partial differential equations, derivi…
Special factors and the combinatorics of suffix and factor automata
2011
AbstractThe suffix automaton (resp. factor automaton) of a finite word w is the minimal deterministic automaton recognizing the set of suffixes (resp. factors) of w. We study the relationships between the structure of the suffix and factor automata and classical combinatorial parameters related to the special factors of w. We derive formulae for the number of states of these automata. We also characterize the languages LSA and LFA of words having respectively suffix automaton and factor automaton with the minimal possible number of states.
From deterministic cellular automata to coupled map lattices
2016
A general mathematical method is presented for the systematic construction of coupled map lattices (CMLs) out of deterministic cellular automata (CAs). The entire CA rule space is addressed by means of a universal map for CAs that we have recently derived and that is not dependent on any freely adjustable parameters. The CMLs thus constructed are termed real-valued deterministic cellular automata (RDCA) and encompass all deterministic CAs in rule space in the asymptotic limit $\kappa \to 0$ of a continuous parameter $\kappa$. Thus, RDCAs generalize CAs in such a way that they constitute CMLs when $\kappa$ is finite and nonvanishing. In the limit $\kappa \to \infty$ all RDCAs are shown to ex…
On the derivation of a linear Boltzmann equation from a periodic lattice gas
2004
We consider the problem of deriving the linear Boltzmann equation from the Lorentz process with hard spheres obstacles. In a suitable limit (the Boltzmann-Grad limit), it has been proved that the linear Boltzmann equation can be obtained when the position of obstacles are Poisson distributed, while the validation fails, also for the "correct" ratio between obstacle size and lattice parameter, when they are distributed on a purely periodic lattice, because of the existence of very long free trajectories. Here we validate the linear Boltzmann equation, in the limit when the scatterer's radius epsilon vanishes, for a family of Lorentz processes such that the obstacles have a random distributio…
Modelling and simulation of several interacting cellular automata
2015
Cellular automata are used for modelling and simulation of many systems. In some applications, the system is formed by a set of subsystems that can be modelled separately, but, in such cases, the existence of interactions between these subsystems requires additional modelling and computer programming. In this paper we propose a modelling methodology for the simulation of a set of cellular automata models that interact with each other. The modelling methodology is described, together with an insight on implementation details. Also, it is applied to a particular cellular automata model, the Sanpile model, to illustrate its use and to obtain some example simulations.
A Tool for Implementing and Exploring SBM Models: Universal 1D Invertible Cellular Automata
2005
The easiest form of designing Cellular Automata rules with features such as invertibility or particle conserving is to rely on a partitioning scheme, the most important of which is the 2D Margolus neighborhood. In this paper we introduce a 1D Margolus-like neighborhood that gives support to a complete set of Cellular Automata models. We present a set of models called Sliding Ball Models based on this neighborhood and capable of universal computation. We show the way of designing logic gates with these models, propose a digital structure to implement them and finally we present SBMTool, a software development system capable of working with the new models.