Search results for "lattices"

showing 10 items of 37 documents

A new lattice action for studying topological charge

1996

We propose a new lattice action for non-abelian gauge theories, which will reduce short-range lattice artifacts in the computation of the topological susceptibility. The standard Wilson action is replaced by the Wilson action of a gauge covariant interpolation of the original fields to a finer lattice. If the latter is fine enough, the action of all configurations with non-zero topological charge will satisfy the continuum bound. As a simpler example we consider the $O(3)$ $\sigma$-model in two dimensions, where a numerical analysis of discretized continuum instantons indicates that a finer lattice with half the lattice spacing of the original is enough to satisfy the continuum bound.

InstantonNuclear and High Energy PhysicsHigh Energy Physics::LatticeLattice field theoryFOS: Physical sciencesTheoretical physicsLattice constantHigh Energy Physics - LatticeHamiltonian lattice gauge theoryLattice (order)Lattice gauge theoryCovariant transformationGauge theoryScalingTopological quantum numberMathematicsPhysicsQuantum gauge theoryNumerical analysisHigh Energy Physics - Lattice (hep-lat)FísicaLattice QCDMap of latticesAtomic and Molecular Physics and OpticsReciprocal latticeQuantum electrodynamicsLattice model (physics)Nuclear Physics B - Proceedings Supplements
researchProduct

Effect of carrier transfer on the PL intensity in self-assembled In (Ga) As/GaAs quantum rings

2006

We present results concerning the carrier transfer between In(Ga)As quantum rings in a stacked multilayer structure, which is characterised by a bimodal size distribution. This transfer of carriers explains the observed temperature behaviour of diode lasers based on that kind of stacked layer structures. The inter-ring carrier transfer can be possible by phonon assisted tunnelling from the ground state of the smallring family towards the big-ring family of the bimodal size distribution. This process is thermally activated in the range 40–80 K.

SuperlatticesPhononChemistrybusiness.industrySuperlatticeCondensed Matter PhysicsMolecular physicsElectronic Optical and Magnetic MaterialsTunnel effectOpticsMultilayersCr-III-V semiconductorsThin filmGround statebusinessInstrumentationQuantum tunnellingDiodeMolecular beam epitaxyThe European Physical Journal Applied Physics
researchProduct

A Mushroom Bodies inspired spiking network for classification and sequence learning

2015

Sequence learning is a complex capability shown by living beings, able to extract information from the environment. Looking into the insect world, there are several examples where the presentation time of specific stimuli is considered to select the proper behavioural response. On the basis of previously developed neural models for sequence learning, inspired by the Drosophila melanogaster, a new formalization of key brain structures involved in the process is here provided. The input classification is performed through resonant neurons, stimulated by the complex dynamics generated in a lattice of recurrent spiking neurons modelling the Mushroom Bodies neuropile in the insect brain. The net…

SequenceBasis (linear algebra)Computer scienceProcess (engineering)business.industryContext (language use)Crystal latticesComplex dynamicsMushroom bodiesArtificial intelligenceSequence learningCrystal lattices; Filtration; Neural networksbusinessFiltrationNeural networksTRACE (psycholinguistics)Filtering; Insects; Lattices; Neurons
researchProduct

Light hadron spectrum, renormalization constants and light quark masses with two dynamical fermions

2004

The results of a preliminary partially quenched (N_f=2) study of the light hadron spectrum, renormalization constants and light quark masses are presented. Numerical simulations are carried out with the LL-SSOR preconditioned Hybrid Monte Carlo with two degenerate dynamical fermions, using the plaquette gauge action and the Wilson quark action at beta = 5.8. Finite volume effects have been investigated employing two lattice volumes: 16^3 x 48 and 24^3 x 48. Configurations have been generated at four values of the sea quark mass corresponding to M_{PS}/M_V ~ 0.6 - 0.8.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHadronFOS: Physical sciences01 natural sciences7. Clean energyMass fermionsRenormalizationHybrid Monte CarloHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeLattice (order)0103 physical sciencesQuantum chromodynamics; Lattices; Mass fermions010306 general physicsPhysicsFinite volume method010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]Degenerate energy levelsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFermionLatticesAtomic and Molecular Physics and OpticsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quantum chromodynamics
researchProduct

Subamorphous thermal conductivity of crystalline half-Heusler superlattices

2021

The quest to improve the thermoelectric figure of merit has mainly followed the roadmap of lowering the thermal conductivity while keeping unaltered the power factor of the material. Ideally an electron-crystal phonon-glass system is desired. In this work, we report an extraordinary reduction of the cross-plane thermal conductivity in crystalline (TiNiSn):(HfNiSn) half-Heusler superlattices (SLs). We create SLs with thermal conductivities below the effective amorphous limit, which is kept in a large temperature range (120–300 K). We measured thermal conductivity at room temperature values as low as 0.75 W m−1 K−1, the lowest thermal conductivity value reported so far for half-Heusler compou…

Work (thermodynamics)Materials scienceSuperlatticesSuperlatticeFOS: Physical sciences02 engineering and technology01 natural sciencesThermal conductivity0103 physical sciencesThermalGeneral Materials ScienceDeposition (law)010302 applied physicsCondensed Matter - Materials ScienceCondensed matter physicsUltralow thermal conductivityMaterials Science (cond-mat.mtrl-sci)Atmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsAmorphous solidThermoelectric generatorAmorphous limit of thermal conductivityMechanics of Materials0210 nano-technology
researchProduct

Spatial Solitons in 2D Lattices of a Nonlinear Nature

2008

These authors describe their observation of two-color optical solitons in a 2D parametric photonic lattice with hexagonal symmetry in lithium niobate. Their results have enabled wavelength-controlled angular steering and the displacement of self-trapped filaments of light.

nonlinear latticesSpatial soliton
researchProduct

Residual crystalline silicon phase in silicon-rich-oxide films subjected to high temperature annealing

2002

Structural properties of silicon rich oxide films (SRO) have been investigated by means of micro-Raman spectroscopy and transmission electron microscopy (TEM). The layers were deposited by plasma enhanced chemical vapor deposition using different SiH4/O2 gas mixtures. The Raman spectra of the as-deposited SRO films are dominated by a broad band in the region 400-500 cm-1 typical of a highly disordered silicon network. After annealing at temperatures above 1000°C in N2, the formation of silicon nanocrystals is observed both in the Raman spectra and in the TEM images. However, most of the precipitated silicon does not crystallize and assumes an amorphous microstructure. © 2002 The Electrochem…

Materials scienceSiliconNanocrystal RamanAnnealing (metallurgy)Analytical chemistrychemistry.chemical_elementMineralogySurfaces Coatings and FilmSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materiasymbols.namesakePlasma-enhanced chemical vapor depositionMaterials ChemistryElectrochemistryCrystalline siliconRAMAN-SPECTROSCOPY; MICROCRYSTALLINE SILICON; THIN-FILMS; SCATTERING; SPECTRA; SUPERLATTICES; NANOCRYSTALS; SIO2-FILMS; SIZERenewable Energy Sustainability and the EnvironmentNanocrystalline siliconSurfaces and InterfacesCondensed Matter PhysicsCrystallographic defectSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAmorphous solidchemistrysymbolsRaman spectroscopy
researchProduct

Tight-binding calculation of spin splittings in semiconductor superlattices

1995

PhysicsTight bindingCondensed matter physicsSemiconductor superlatticesSpin (physics)Physical Review B
researchProduct

Hierarchies of length-scale based typology in anisotropic U(1)s-wave multiband superconductors

2019

Since Ginzburg and Landau's seminal work in 1950, superconducting states have been classified by the hierarchy of the fundamental length scales of the theory, the magnetic-field penetration lengths and coherence lengths. In the simplest single-component case they form a dimensionless ratio κ. The model was generalized by Ginzburg for anisotropic materials in 1952. In this paper we expand the above length-scale analysis to anisotropic multicomponent superconductors that can have multiple coherence lengths as well as multiple magnetic-field penetration lengths, leading to unconventional length-scale hierarchies. We demonstrate that the anisotropies in multiband superconductors lead to new reg…

suprajohtavuusCondensed Matter::Superconductivitymultiband superconductivityvortex latticessuprajohteet
researchProduct

The DMT of Real and Quaternionic Lattice Codes and DMT Classification of Division Algebra Codes

2021

In this paper we consider the diversity-multiplexing gain tradeoff (DMT) of so-called minimum delay asymmetric space-time codes. Such codes are less than full dimensional lattices in their natural ambient space. Apart from the multiple input single output (MISO) channel there exist very few methods to analyze the DMT of such codes. Further, apart from the MISO case, no DMT optimal asymmetric codes are known. We first discuss previous criteria used to analyze the DMT of space-time codes and comment on why these methods fail when applied to asymmetric codes. We then consider two special classes of asymmetric codes where the code-words are restricted to either real or quaternion matrices. We p…

FOS: Computer and information sciencesmaximum likelihood decodingComputer Science - Information TheoryInformation Theory (cs.IT)upper boundspace-time codes020206 networking & telecommunications02 engineering and technologyalgebraLibrary and Information SciencesencodingtiedonsiirtoComputer Science ApplicationslatticeskoodausteoriaMIMO-tekniikka0202 electrical engineering electronic engineering information engineeringMIMO communicationComputer Science::Information TheoryInformation SystemsIEEE Transactions on Information Theory
researchProduct