Search results for "lcsh:B"

showing 10 items of 2768 documents

Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog

2017

The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorim…

0301 basic medicineProtein subunitMutantBiophysicsHeterologousBiochemistryChaperoninChaperoninlcsh:Biochemistry03 medical and health sciencesDSC differential scanning calorimetryCCT% chaperoninPf Pyrococcus furiosusDenaturation (biochemistry)lcsh:QD415-436Molecular Biologylcsh:QH301-705.5DLS dynamic light scatteringbiologyITC isothermal titration calorimetryWild typeIsothermal titration calorimetryCell BiologyChaperonopathiesbiology.organism_classificationProtein calorimetryNeuropathyPyrococcus furiosus030104 developmental biologyBiochemistryBiophysiclcsh:Biology (General)Pyrococcus furiosusChaperonopathieCCT5; Chaperonin; Chaperonopathies; Neuropathy; Protein calorimetry; Pyrococcus furiosus; Biophysics; Biochemistry; Molecular Biology; Cell BiologyCCT5Pyrococcus furiosuResearch ArticlePf-CD1 Pyrococcus furiosus chaperonin subunit with the last 22 amino acids deletedBiochemistry and Biophysics Reports
researchProduct

Automated selection of homologs to track the evolutionary history of proteins

2018

Background The selection of distant homologs of a query protein under study is a usual and useful application of protein sequence databases. Such sets of homologs are often applied to investigate the function of a protein and the degree to which experimental results can be transferred from one organism to another. In particular, a variety of databases facilitates static browsing for orthologs. However, these resources have a limited power when identifying orthologs between taxonomically distant species. In addition, in some situations, for a given query protein, it is advantageous to compare the sets of orthologs from different specific organisms: this recursive step-wise search might give …

0301 basic medicineProteomeComputer scienceComputational biologyWeb toollcsh:Computer applications to medicine. Medical informaticsBiochemistryHomology (biology)Evolution Molecular03 medical and health sciences0302 clinical medicineProtein sequencingStructural BiologyHomologous chromosomeHumansDatabases ProteinMolecular Biologylcsh:QH301-705.5OrganismProtein functionMethodology ArticleApplied MathematicsProteinsA proteinComputer Science ApplicationsHomologyEvolutionary path030104 developmental biologyComputingMethodologies_PATTERNRECOGNITIONlcsh:Biology (General)Proteomelcsh:R858-859.7DNA microarraySoftware030217 neurology & neurosurgeryBMC Bioinformatics
researchProduct

Biomarkers in Anderson–Fabry Disease

2020

Fabry disease is a rare lysosomal storage disorder caused by a deficiency of α-galactosidase A, resulting in multisystemic involvement. Lyso-Gb3 (globotriaosylsphingosine), the deacylated form of Gb3, is currently measured in plasma as a biomarker of classic Fabry disease. Intensive research of biomarkers has been conducted over the years, in order to detect novel markers that may potentially be used in clinical practice as a screening tool, in the context of the diagnostic process and as an indicator of response to treatment. An interesting field of application of such biomarkers is the management of female heterozygotes who present difficulty in predictable clinical progression. This revi…

0301 basic medicineProteomeContext (language use)ReviewDisease030204 cardiovascular system & hematologylyso-Gb3BioinformaticsCatalysislcsh:ChemistryInorganic Chemistry03 medical and health sciences0302 clinical medicinemedicineAnimalsHumansPhysical and Theoretical Chemistryfabrylcsh:QH301-705.5Molecular BiologySpectroscopybusiness.industryMolecular pathologyOrganic ChemistryClinical coursebiomarkersBiomarkerGeneral Medicinemedicine.diseaseResponse to treatmentFabry diseaseComputer Science ApplicationsMicroRNAsAnderson-Fabry Disease030104 developmental biologylcsh:Biology (General)lcsh:QD1-999MetabolomeFabry DiseaseBiomarker (medicine)businessInternational Journal of Molecular Sciences
researchProduct

Quantitative Proteomics Reveals Changes Induced by TIMP-3 on Cell Membrane Composition and Novel Metalloprotease Substrates

2021

Ectodomain shedding is a key mechanism of several biological processes, including cell-communication. Disintegrin and metalloproteinases (ADAMs), together with the membrane-type matrix metalloproteinases, play a pivotal role in shedding transmembrane proteins. Aberrant shedding is associated to several pathological conditions, including arthritis. Tissue inhibitor of metalloproteases 3 (TIMP-3), an endogenous inhibitor of ADAMs and matrix metalloproteases (MMPs), has been proven to be beneficial in such diseases. Thus, strategies to increase TIMP-3 bioavailability in the tissue have been sought for development of therapeutics. Nevertheless, high levels of TIMP-3 may lead to mechanism-based …

0301 basic medicineProteomicsADAM15ProteomeCellMatrix metalloproteinaseMass SpectrometryCell membranelcsh:Chemistryanalysis [Proteome]lcsh:QH301-705.5proteomicSpectroscopybiologyChemistrytissue inhibitor of metalloproteases 3 (TIMP-3)General MedicineTransmembrane proteinComputer Science ApplicationsCell biologymedicine.anatomical_structureEctodomainddc:540TIMP3 protein humanmetalloproteinaseectodomain sheddingmetabolism [Tissue Inhibitor of Metalloproteinase-3]Quantitative proteomicsADAM15 protein humanchemistry [Cell Membrane]Catalysismetabolism [Cell Membrane]ArticlemetalloproteinasesInorganic Chemistry03 medical and health sciencestissue inhibitor of metalloproteases 3 (TIMP-3).medicineDisintegrinHumansPhysical and Theoretical ChemistryMolecular BiologyTissue Inhibitor of Metalloproteinase-3030102 biochemistry & molecular biologyOrganic ChemistryCell MembraneMembrane Proteinsmetabolism [Proteome]ADAM Proteins030104 developmental biologyHEK293 Cellslcsh:Biology (General)lcsh:QD1-999metabolism [ADAM Proteins]biology.proteinmetabolism [Membrane Proteins]International Journal of Molecular Sciences
researchProduct

The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model

2017

Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced b…

0301 basic medicineProteomicsRetinal Ganglion Cellsgenetic structuresNerve fiber layerGlaucomaCell CountMass Spectrometrylcsh:ChemistryPathogenesischemistry.chemical_compound0302 clinical medicineexperimental glaucoma; α-crystallin B; neuroprotection; proteomicsProtein Interaction Mapslcsh:QH301-705.5Spectroscopyα-crystallin BGeneral MedicineComputer Science ApplicationsUp-Regulationmedicine.anatomical_structureNeuroprotective AgentsRetinal ganglion cellneuroprotectionRetinal Neuronsmedicine.medical_specialtyDown-RegulationBiologyNeuroprotectionCatalysisArticleInorganic Chemistry03 medical and health sciencesCrystallinOphthalmologyHeat shock proteinmedicineElectroretinographyAnimalsPhysical and Theoretical ChemistryMolecular BiologyIntraocular Pressureexperimental glaucomaOrganic Chemistryalpha-Crystallin B ChainRetinalGlaucomamedicine.diseaseeye diseasesDisease Models Animal030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistry030221 ophthalmology & optometrysense organsInternational Journal of Molecular Sciences; Volume 18; Issue 11; Pages: 2418
researchProduct

Cytotoxic activity of the histone deacetylase 3-Selective inhibitor Pojamide on MDA-MB-231 triple-negative breast cancer cells

2019

We examined the effects of the ferrocene-based histone deacetylase-3 inhibitor Pojamide (N1-(2-aminophenyl)-N8-ferrocenyloctanediamide) and its two derivatives N1-(2-aminophenyl)-N6-ferrocenyladipamide and N1-(2-aminophenyl)-N8-ferroceniumoctanediamide tetrafluoroborate on triple-negative MDA-MB-231 breast cancer cells. Viability/growth assays indicated that only the first two compounds at 70 &mu

0301 basic medicineQD0901Triple Negative Breast Neoplasmslcsh:Chemistry0302 clinical medicinebreast cancer cellmitochondrial transmembrane potentialCytotoxic T cellQDSettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5SpectroscopyTriple-negative breast cancerreactive oxygen speciesCell DeathChemistryHistone deacetylase inhibitorQapoptosisGeneral MedicineCell cycle3. Good healthComputer Science Applications030220 oncology & carcinogenesisFemalecell cycleProgrammed cell deathautophagymedicine.drug_classCell SurvivalCatalysisArticleHistone DeacetylasesInorganic Chemistry03 medical and health sciencesCell Line TumormedicineBiomarkers TumorHumansViability assayPhysical and Theoretical ChemistryMolecular Biologyhistone deacetylase inhibitorcell viabilityOrganic ChemistryAutophagyapoptosiMatrix MetalloproteinasesHistone Deacetylase InhibitorsSettore BIO/18 - Genetica030104 developmental biologylcsh:Biology (General)lcsh:QD1-999ApoptosisCancer researchQD0146breast cancer cells
researchProduct

Hypoxia‐induced non‐coding rnas controlling cell viability in cancer

2021

Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators i…

0301 basic medicineRNA UntranslatedCellProliferationReviewlcsh:ChemistryTransduction (genetics)0302 clinical medicineNeoplasmsGene expressionBasic Helix-Loop-Helix Transcription FactorsTumor MicroenvironmentRNA NeoplasmHypoxialcsh:QH301-705.5SpectroscopyCancerGeneral MedicineCell cycleCell HypoxiaComputer Science ApplicationsCell biologyNeoplasm Proteinsmedicine.anatomical_structure030220 oncology & carcinogenesismiRNAscell cyclemedicine.symptomMiRNASignal TransductionCell SurvivallncRNAsBiologyCatalysisInorganic Chemistry03 medical and health sciencesmicroRNAmedicineHumansHIFViability assayPhysical and Theoretical ChemistryMolecular BiologyOrganic ChemistryCancerHypoxia (medical)medicine.diseaseLncRNA030104 developmental biologylcsh:Biology (General)lcsh:QD1-999
researchProduct

Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures

2020

G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the c…

0301 basic medicineRNA UntranslatedReviewEpigenesis GeneticHistoneslcsh:ChemistryDNA bases modificationheterocyclic compoundslcsh:QH301-705.5SpectroscopyRegulation of gene expressionG-quadruplexbiologyhistone-modifying activitiesGeneral MedicineNon-coding RNAChromatinComputer Science ApplicationsChromatinHistonehistone post-translational modificationsnucleosome remodelingepigeneticSettore BIO/11 - Biologia MolecolareComputational biologyhistone-modifying activitienoncoding RNACatalysisInorganic Chemistry03 medical and health scienceschromatin architectureAnimalsNucleosomehistone post-translational modificationEpigeneticsPhysical and Theoretical ChemistryMolecular BiologyPost-transcriptional regulationepigenetics030102 biochemistry & molecular biologyOrganic ChemistryDNA bases modificationsRNAG-quartetG-Quadruplexes030104 developmental biologyGene Expression Regulationlcsh:Biology (General)lcsh:QD1-999biology.proteinpost-transcriptional regulationInternational Journal of Molecular Sciences
researchProduct

Primary Cilium-Mediated Retinal Pigment Epithelium Maturation Is Disrupted in Ciliopathy Patient Cells

2018

SUMMARY Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking pr…

0301 basic medicineRetinal degenerationInduced Pluripotent Stem CellsRespiratory MucosaRetinal Pigment EpitheliumBiologyCell MaturationCiliopathiesArticleGeneral Biochemistry Genetics and Molecular BiologyMice03 medical and health sciencesCiliogenesismedicineAnimalsCiliaInduced pluripotent stem celllcsh:QH301-705.5Mice KnockoutRetinal pigment epitheliumCiliumRetinal Degenerationmedicine.diseaseCiliopathieseye diseasesCell biologyProtein Kinase C-deltaCiliopathy030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)sense organsCell Reports
researchProduct

Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles

2017

Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of mol…

0301 basic medicineReviewCatalysislcsh:Chemistryextracellular RNAsInorganic ChemistryExtracellular matrixExtracellular Vesicles03 medical and health sciencesGliomaSettore BIO/10 - BiochimicaParenchymamedicineExtracellularAnimalsHumansNeoplasm InvasivenessPhysical and Theoretical ChemistrySettore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5Molecular BiologySpectroscopychemistry.chemical_classificationECMBrain Neoplasmsbrain cancer invasionOrganic ChemistryCancerGliomaGeneral MedicineMetabolismmedicine.diseaseExtracellular MatrixComputer Science ApplicationsCell biologyglioma cell030104 developmental biologyEnzymeglioma cells; brain cancer invasion; extracellular vesicles (EVs); ECM; extracellular RNAslcsh:Biology (General)lcsh:QD1-999chemistryglioma cellsextracellular vesicles (EVs)Intracellular
researchProduct