Search results for "learning machine"

showing 10 items of 32 documents

A Douglas–Rachford method for sparse extreme learning machine

2019

Operator splittingSparse regularizationAlgorithmExtreme learning machineMathematicsMethods and Applications of Analysis
researchProduct

Design environment for hardware generation of SLFF neural network topologies with ELM training capability

2015

Extreme Learning Machine (ELM) is a noniterative training method suited for Single Layer Feed Forward Neural Networks (SLFF-NN). Typically, a hardware neural network is trained before implementation in order to avoid additional on-chip occupation, delay and performance degradation. However, ELM provides fixed-time learning capability and simplifies the process of re-training a neural network once implemented in hardware. This is an important issue in many applications where input data are continuously changing and a new training process must be launched very often, providing self-adaptation. This work describes a general SLFF-NN design environment to assist in the definition of neural netwo…

Physical neural networkHardware architectureArtificial neural networkTime delay neural networkbusiness.industryComputer scienceDesign flowSoftware designbusinessNetwork topologyComputer hardwareExtreme learning machine2015 IEEE 13th International Conference on Industrial Informatics (INDIN)
researchProduct

Minimal learning machine in hyperspectral imaging classification

2020

A hyperspectral (HS) image is typically a stack of frames, where each frame represents the intensity of a different wavelength of light. Each spatial pixel has a spectrum. In the classification of the HS image, each spectrum is classified pixel-by-pixel. In some of the real-time applications, the amount of the HS image data causes performance challenges. Those issues relate to the platforms (e.g. drones) payload restrictions, the issues of the available energy and to the complexity of the machine learning models. In this study, we introduce the minimal learning machine (MLM) as a computationally cheap training and classification machine learning method for the hyperspectral imaging classificatio…

Principal Component AnalysisMinimal Learning MachineArtificial neural networkPixelComputer sciencebusiness.industryFrame (networking)Payload (computing)spektrikuvausHyperspectral imagingPattern recognitionHyperspectral ImagingClassificationRandom forestSupport vector machineData pointkoneoppiminenkuvantaminenDistance LearningArtificial intelligencebusiness
researchProduct

Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps

2015

Abstract The assessment of class frequency in soil map legends is affected by uncertainty, especially at small scales where generalization is greater. The aim of this study was to test the hypothesis that data mining techniques provide better estimation of class frequency than traditional deterministic pedology in a national soil map. In the 1:5,000,000 map of Italian soil regions, the soil classes are the WRB reference soil groups (RSGs). Different data mining techniques, namely neural networks, random forests, boosted tree, classification and regression tree, and supported vector machine (SVM), were tested and the last one gave the best RSG predictions using selected auxiliary variables a…

Soil mapGeomaticBayesian probabilitySoil ScienceSoil classificationLearning machinecomputer.software_genreSoil typeRandom forestSupport vector machineItalySettore AGR/14 - PedologiaSoil classificationStatisticsPedologyData miningBayesian predictivityScale (map)computerMathematics
researchProduct

PIECEWISE ANOMALY DETECTION USING MINIMAL LEARNING MACHINE FOR HYPERSPECTRAL IMAGES

2021

Abstract. Hyperspectral imaging, with its applications, offers promising tools for remote sensing and Earth observation. Recent development has increased the quality of the sensors. At the same time, the prices of the sensors are lowering. Anomaly detection is one of the popular remote sensing applications, which benefits from real-time solutions. A real-time solution has its limitations, for example, due to a large amount of hyperspectral data, platform’s (drones or a cube satellite) constraints on payload and processing capability. Other examples are the limitations of available energy and the complexity of the machine learning models. When anomalies are detected in real-time from the hyp…

TechnologyMinimal Learning Machinehyperspectral imagingComputer scienceRemote sensing applicationConstant false alarm rateRobustness (computer science)Applied optics. Photonicshyperspektrikuvantaminenbusiness.industryTspektrikuvausPayload (computing)Hyperspectral imagingPattern recognitionEngineering (General). Civil engineering (General)anomaly detectionTA1501-1820piecewise approachmachine learningkoneoppiminenPiecewiseAnomaly detectionNoise (video)Artificial intelligenceTA1-2040businessreal-time computationISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
researchProduct

ELM Regularized Method for Classification Problems

2016

Extreme Learning Machine (ELM) is a recently proposed algorithm, efficient and fast for learning the parameters of single layer neural structures. One of the main problems of this algorithm is to choose the optimal architecture for a given problem solution. To solve this limitation several solutions have been proposed in the literature, including the regularization of the structure. However, to the best of our knowledge, there are no works where such adjustment is applied to classification problems in the presence of a non-linearity in the output; all published works tackle modelling or regression problems. Our proposal has been applied to a series of standard databases for the evaluation o…

Wake-sleep algorithmComputer sciencebusiness.industryTraining timeBayesian probability02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesRegularization (mathematics)Support vector machine010104 statistics & probabilityArtificial Intelligence0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligence0101 mathematicsbusinessRegression problemscomputerSingle layerExtreme learning machineInternational Journal on Artificial Intelligence Tools
researchProduct

Orientation Adaptive Minimal Learning Machine for Directions of Atomic Forces

2021

Machine learning (ML) force fields are one of the most common applications of ML in nanoscience. However, commonly these methods are trained on potential energies of atomic systems and force vectors are omitted. Here we present a ML framework, which tackles the greatest difficulty on using forces in ML: accurate prediction of force direction. We use the idea of Minimal Learning Machine to device a method which can adapt to the orientation of an atomic environment to estimate the directions of force vectors. The method was tested with linear alkane molecules. peerReviewed

atomsComputer sciencebusiness.industryforce directionsmolekyylitOrientation (graph theory)nanotieteetatomitmachine learningkoneoppiminenMinimal learning machineComputer visionmoleculesArtificial intelligencebusiness
researchProduct

Minimal learning machine in anomaly detection from hyperspectral images

2020

Abstract. Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.

lcsh:Applied optics. PhotonicsComputer sciencehyperspectral imagingData needs0211 other engineering and technologies02 engineering and technologylcsh:TechnologyConstant false alarm rateremote sensing0202 electrical engineering electronic engineering information engineering021101 geological & geomatics engineeringData collectionlcsh:Tbusiness.industryspektrikuvausProcess (computing)lcsh:TA1501-1820Hyperspectral imagingPattern recognitionminimal learning machineDroneanomaly detectionkoneoppiminenMinimal learning machinelcsh:TA1-2040020201 artificial intelligence & image processingAnomaly detectionArtificial intelligencekaukokartoituslcsh:Engineering (General). Civil engineering (General)business
researchProduct

Comparing Different approaches - Data mining, Geostatistic, and Deterministic pedology - to assess the Frequency of WRB reference soil groups in the …

2014

Estimating frequency of soil classes in map unit is always affected by some degree of uncertainty, especially at small scales, with a larger generalization. The aim of this study was to compare different possible approaches - data mining, geostatistic, deterministic pedology - to assess the frequency of WRB Reference Soil Groups (RSG) in the major Italian soil regions. In the soil map of Italy (Costantini et al., 2012), a list of the first five RSG was reported in each major 10 soil regions. The soil map was produced using the national soil geodatabase, which stored 22,015 analyzed and classified pedons, 1,413 soil typological unit (STU) and a set of auxiliary variables (lithology, land-use…

learning machine non-linear kriging soil type classification ItalySettore AGR/14 - PedologiaLearning machine deterministic data mining Bayesian predictivitySoil classification Italy
researchProduct

Updating strategies for distance based classification model with recursive least squares

2022

Abstract. The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach ma…

luokitus (toiminta)Minimal Learning Machinemachine learningkoneoppiminenclassificationhyperspectral imagingkaukokartoitusRecursive Least Squaresreal-time computationhyperspektrikuvantaminen
researchProduct