Search results for "learning."

showing 10 items of 6527 documents

Statistical retrieval of atmospheric profiles with deep convolutional neural networks

2019

Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesWeather forecasting02 engineering and technologycomputer.software_genreAtmospheric measurements01 natural sciencesConvolutional neural networkLinear regressionRedundancy (engineering)Information retrievalInfrared measurementsComputers in Earth SciencesEngineering (miscellaneous)021101 geological & geomatics engineering0105 earth and related environmental sciencesArtificial neural networkbusiness.industryDeep learningDimensionality reductionPattern recognitionAtomic and Molecular Physics and OpticsComputer Science Applications13. Climate actionNoise (video)Artificial intelligencebusinesscomputerNeural networksISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Convolutional Neural Networks for Cloud Screening: Transfer Learning from Landsat-8 to Proba-V

2018

Cloud detection is a key issue for exploiting the information from Earth observation satellites multispectral sensors. For Proba-V, cloud detection is challenging due to the limited number of spectral bands. Advanced machine learning methods, such as convolutional neural networks (CNN), have shown to work well on this problem provided enough labeled data. However, simultaneous collocated information about the presence of clouds is usually not available or requires a great amount of manual labor. In this work, we propose to learn from the available Landsat −8 cloud masks datasets and transfer this learning to solve the Proba-V cloud detection problem. CNN are trained with Landsat images adap…

010504 meteorology & atmospheric sciencesComputer sciencebusiness.industryMultispectral image0211 other engineering and technologiesPattern recognitionCloud computing02 engineering and technologySpectral bands01 natural sciencesConvolutional neural networkData modelingKey (cryptography)Artificial intelligencebusinessTransfer of learning021101 geological & geomatics engineering0105 earth and related environmental sciencesIGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

Supporting group decision makers to locate temporary relief distribution centres after sudden-onset disasters

2020

International audience; In the humanitarian response, multiple decision-makers (DMs) need to collaborate in various problems, such as locating temporary relief distribution centres (RDCs). Several studies have argued that maximising demand coverage, reducing logistics costs and minimising response time are among the critical objectives when locating RDCs after a sudden-onset disaster. However, these objectives are often conflicting and the trade-offs can considerably complicate the situation for finding a consensus.To address the challenge and support the DMs, we suggest investigating the stability of non-dominated alternatives derived from a multi-objective model based on Monte Carlo Simul…

010504 meteorology & atmospheric sciencesComputer sciencemedicine.medical_treatment0211 other engineering and technologiesStability (learning theory)Distribution (economics)02 engineering and technology01 natural sciencesHumanitarian responseNATURAL DISASTERSupport groupINFORMATION-MANAGEMENT[SPI]Engineering Sciences [physics]NETWORK DESIGNGroup decision-making2015 Nepal earthquakemedicineOPTIMIZATIONVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Monte Carlo simulation0105 earth and related environmental sciences021110 strategic defence & security studiesCOORDINATIONCOMPLEXDISTRIBUTION MODELbusiness.industrySTOCHASTIC-MODELHumanitarian responseGeologyGeotechnical Engineering and Engineering GeologyRisk analysis (engineering)Multiobjective facility locationPARETO SETbusinessSafety ResearchHUMANITARIAN LOGISTICSSudden onsetInternational Journal of Disaster Risk Reduction
researchProduct

Understanding deep learning in land use classification based on Sentinel-2 time series

2020

AbstractThe use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model’s decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims …

010504 meteorology & atmospheric sciencesEnvironmental economicsComputer scienceProcess (engineering)0211 other engineering and technologieslcsh:MedicineClimate changeContext (language use)02 engineering and technology01 natural sciencesArticleRelevance (information retrieval)lcsh:Science021101 geological & geomatics engineering0105 earth and related environmental sciencesInterpretabilityMultidisciplinaryLand useContextual image classificationbusiness.industryDeep learninglcsh:RClimate-change policy15. Life on landComputer scienceData scienceEnvironmental sciencesEnvironmental social sciences13. Climate actionlcsh:QAnomaly detectionArtificial intelligencebusinessCommon Agricultural PolicyAgroecologyScientific Reports
researchProduct

Transferring deep learning models for cloud detection between Landsat-8 and Proba-V

2020

Abstract Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical proper…

010504 meteorology & atmospheric sciencesExploitComputer sciencebusiness.industryDeep learning0211 other engineering and technologiesCloud detectionCloud computing02 engineering and technologyEarth observation satellitecomputer.software_genre01 natural sciencesConvolutional neural networkAtomic and Molecular Physics and OpticsComputer Science ApplicationsSatelliteData miningArtificial intelligenceComputers in Earth SciencesbusinessTransfer of learningEngineering (miscellaneous)computer021101 geological & geomatics engineering0105 earth and related environmental sciencesISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

2016

Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…

010504 meteorology & atmospheric sciencesMeteorologyFLUXNET0208 environmental biotechnology0207 environmental engineeringlcsh:Life02 engineering and technologySensible heatAtmospheric sciences7. Clean energy01 natural sciencesFlux (metallurgy)FluxNetMachine learning; Carbon fluxes; Energy fluxes; FLUXNET; Remote sensing; FLUXCOMlcsh:QH540-549.5Latent heatMachine learningCarbon fluxes020701 environmental engineeringEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface ProcessesFLUXCOMMultivariate adaptive regression splineslcsh:QE1-996.5Empirical modellingPrimary production15. Life on landRemote sensingEnergy fluxes020801 environmental engineeringlcsh:Geologylcsh:QH501-531Kernel method13. Climate actionEnvironmental sciencelcsh:EcologyBiogeosciences
researchProduct

Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran

2021

The identification of landslide-prone areas is an essential step in landslide hazard assessment and mitigation of landslide-related losses. In this study, we applied two novel deep learning algorithms, the recurrent neural network (RNN) and convolutional neural network (CNN), for national-scale landslide susceptibility mapping of Iran. We prepared a dataset comprising 4069 historical landslide locations and 11 conditioning factors (altitude, slope degree, profile curvature, distance to river, aspect, plan curvature, distance to road, distance to fault, rainfall, geology and land-sue) to construct a geospatial database and divided the data into the training and the testing dataset. We then d…

010504 meteorology & atmospheric sciencesReceiver operating characteristicbusiness.industryDeep learningSpatial databaselcsh:QE1-996.5Deep learningLandslideIranLandslide susceptibility010502 geochemistry & geophysicsRNN01 natural sciencesConvolutional neural networklcsh:GeologyLandslideRecurrent neural networkGeneral Earth and Planetary SciencesArtificial intelligenceScale (map)businessAlgorithmCNNGeology0105 earth and related environmental sciencesGeoscience Frontiers
researchProduct

Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.

2019

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…

010504 meteorology & atmospheric sciencesradiative transfer models0211 other engineering and technologiesemulation02 engineering and technologytop-of-atmosphere radiance data01 natural sciencesEmulation; Global sensitivity analysis; Machine learning; MODTRAN; PROSAIL; Radiative transfer models; Retrieval; Sentinel-2; Top-of-atmosphere radiance dataKrigingRange (statistics)Radiative transferLeaf area indexlcsh:Scienceretrieval021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMODTRANPROSAILMODTRANAtmospheric correctionradiative transfer models; global sensitivity analysis; emulation; machine learning; top-of-atmosphere radiance data; PROSAIL; MODTRAN; retrieval; Sentinel-2machine learningglobal sensitivity analysisLookup tableRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QSentinel-2Remote sensing
researchProduct

Comparing methods for computation of run-up heights of landslide-generated tsunami in the Northern Sicily continental margin

2018

The North Sicily continental margin is a very active region located in the Central Mediterranean. Strong seismicity, active tectonics and volcanism, fluid escape, high sediment supply, and widespread mass movements historically have exposed this region to marine geohazards, with a potential for tsunami generation. Morpho-bathymetric analysis revealed that one of the most common mechanisms associated with marine geohazards is due to submarine mass failure processes, genetically linked to the other processes active in this margin. With the aim to assess the risks associated with landslide-generated anomalous waves, we selected two sectors of this margin, Gulf of Palermo to the west and Patti …

010504 meteorology & atmospheric sciencestsunami run-up submarine landslideLandslideVolcanismEnvironmental Science (miscellaneous)Induced seismicity010502 geochemistry & geophysicsGeotechnical Engineering and Engineering GeologyOceanography01 natural sciencesTectonicsContinental marginMargin (machine learning)Earth and Planetary Sciences (miscellaneous)Submarine pipelineSeismologyGeology0105 earth and related environmental sciencesSubmarine landslide
researchProduct