Search results for "ligands"
showing 10 items of 721 documents
High Turnover Catalase Activity of a Mixed‐Valence Mn II Mn III Complex with Terminal Carboxylate Donors
2015
The neutral dimanganese(II,III) complex [Mn-2(BCPMP)-(OAc)(2)] [1; BCPMP3- = 2,6-bis({(carboxymethyl)[(1-pyridyl)-methyl] amino} methyl)-4-methylphenolato] has been synthesized and characterized. The complex contains two terminal carboxylate donors. Complex 1 was found to be an effective catalyst for the disproportionation of H2O2 with high catalytic rate and a turnover number of 7500, the highest turnover reported to date for a catalase mimic. The rates and TON were significantly higher than recorded for a dicationic dimanganese( II,III) counterpart ([Mn-2(BPBP)(OAc)(2)]center dot(ClO4)(2), 2; BPBP- = 2,6-bis{[bis(2-pyridylmethyl)amino]methyl}-4-butylphen-olato), which lacks the terminal c…
Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks
2021
International audience; Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization–Diels–Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensor…
Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization.
2013
A general methodology for patterning of multiple protein ligands with lateral dimensions below those of single cells is described. It employs dip pen nanolithography (DPN) patterning of DNA oligonucleotides which are then used as capture strands for DNA-directed immobilization (DDI) of oligonucleotide-tagged proteins. This study reports the development and optimization of PEG-based liquid ink, used as carrier for the immobilization of alkylamino-labeled DNA oligomers on chemically activated glass surfaces. The resulting DNA arrays have typical spot sizes of 4-5 μm with a pitch of 12 μm micrometer. It is demonstrated that the arrays can be further functionalized with covalent DNA-streptavidi…
Metallogel formation in aqueous DMSO by perfluoroalkyl decorated terpyridine ligands.
2016
Terpyridine based ligands 1 and 2, decorated with a C8F17 perfluorinated tag, are able to form stable thermoreversible gels in the presence of several d-block metal chloride salts. The gel systems obtained have been characterized by NMR, X-ray diffraction, electron microscopies and Tgel experiments in order to gain insights into the observed different behaviour of the two similar ligands, also in terms of the effect of additional common anionic species. peerReviewed
Bipyridine based metallogels: an unprecedented difference in photochemical and chemical reduction in the in situ nanoparticle formation
2017
Metal co-ordination induced supramolecular gelation of low molecular weight organic ligands is a rapidly expanding area of research due to the potential in creating hierarchically self-assembled multi-stimuli responsive materials. In this context, structurally simple O-methylpyridine derivatives of 4,4′-dihydroxy-2,2′-bipyridine ligands are reported. Upon complexation with Ag(I) ions in aqueous dimethyl sulfoxide (DMSO) solutions the ligands spontaneously form metallosupramolecular gels at concentrations as low as 0.6 w/v%. The metal ions induce the self-assembly of three dimensional (3D) fibrillar networks followed by the spontaneous in situ reduction of the Ag-centers to silver nanopartic…
Specific adduction of plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase
2006
International audience; Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the {alpha}-ketol 9-hydroxy-10-oxo-12(Z)-octadecenoic acid. Further studies on the formation of LTP1b demonstrated that the ligand was introduced by nucleophilic attack of the free carboxylate group of the Asp-7 residu…
A lipid transfer protein binds to a receptor involved in the control of plant defence responses
2001
AbstractLipid transfer proteins (LTPs) and elicitins are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defence mechanisms, the biological function of LTP is still an enigma. We show that a wheat LTP1 binds with high affinity sites. Binding and in vivo competition experiments point out that these binding sites are common to LTP1 and elicitins and confirm that they are the biological receptors of elicitins. A mathematical analysis suggests that these receptors could be represented by an allosteric model corresponding to an oligomeric structure with four identical subunits.
Pharmacophore Models Derived from Molecular Dynamics Simulations of Protein-Ligand Complexes: A Case Study
2018
A single, merged pharmacophore hypothesis is derived combining 2000 pharmacophore models obtained during a 20 ns molecular dynamics simulation of a protein-ligand complex with one pharmacophore model derived from the initial PDB structure. This merged pharmacophore model contains all features that are present during the simulation and statistical information about the dynamics of the pharmacophore features. Based on the dynamics of the pharmacophore features we derive two distinctive feature patterns resulting in two different pharmacophore models for the analyzed system – the first model consists of features that are obtained from the PDB structure and the second uses two features that ca…
Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7
2018
AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…
The Repurposing of Old Drugs or Unsuccessful Lead Compounds by in Silico Approaches: New Advances and Perspectives
2015
Have you a compound in your lab, which was not successful against the designed target, or a drug that is no more attractive? The drug repurposing represents the right way to reconsider them. It can be defined as the modern and rationale approach of the traditional methods adopted in drug discovery, based on the knowledge, insight and luck, alias known as serendipity. This repurposing approach can be applied both in silico and in wet. In this review we report the molecular modeling facilities that can be of huge support in the repurposing of drugs and/or unsuccessful lead compounds. In the last decades, different methods were proposed to help the scientists in drug design and in drug repurpo…