Search results for "light-emission"

showing 4 items of 4 documents

A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory

2010

The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierr…

Angstrom exponentAstronomyAstrophysics01 natural sciencesAugerCROSS-SECTIONSCOSMIC-RAY SHOWERSObservatoryDEPENDENCEHigh-Energy Cosmic Ray010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Lidar[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ANGSTROM EXPONENTPierre Auger ObservatoryBi-static lidarELECTRONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMULTIPLE-SCATTERINGLight emissionFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLIGHT-EMISSIONAstrophysics - Cosmology and Nongalactic Astrophysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Extensive air showerFOS: Physical sciencesCosmic raySURFACE DETECTORAir fluorescence method0103 physical sciencesExtensive air showersRECONSTRUCTIONAerosolInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryAerosolsCalorimeter (particle physics)Atmospheric effect010308 nuclear & particles physicsAtmosphereFísicaAstronomy and AstrophysicsCosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidarCosmic rayNITROGENAir showerFluorescence Telescopes13. Climate actionExperimental High Energy PhysicsAEROSSOL
researchProduct

Experimental investigation of the kink effect and the low frequency noise properties in pseudomorphic HEMT’s

2005

The kink effect in low-noise pseudomorphic (AlGaAs/InGaAs) HEMT's has been examined in detail by investigating the steady-state and pulsed I-V characteristics, the behavior of the output conductance dispersion and the performance of the gate leakage current to understand its origin. No clear evidence of impact ionization occurrence in the InGaAs channel at kink bias conditions (V-DS.kink = 1.5 V) has been found, thus suggesting that the predominant mechanism should be attributed to trap-related phenomena. A significant rise of the gate current has been found at very high drain voltages (far from V-DS.kink) associated with low drain current values which is probably due to impact ionization o…

IMPACT IONIZATIONCondensed matter physicsChemistrybusiness.industryInfrasoundGATEElectrical engineeringConductanceHigh-electron-mobility transistorLow frequencyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsCutoff frequencyElectronic Optical and Magnetic MaterialsImpact ionizationDispersion (optics)Materials ChemistryINALAS/INGAAS HEMTSElectrical and Electronic EngineeringbusinessDRAINLIGHT-EMISSIONBEHAVIORNoise (radio)Solid-State Electronics
researchProduct

Ultrathin silicon nanowires for optical and electrical nitrogen dioxide detection

2021

The ever-stronger attention paid to enhancing safety in the workplace has led to novel sensor development and improvement. Despite the technological progress, nanostructured sensors are not being commercially transferred due to expensive and non-microelectronic compatible materials and processing approaches. In this paper, the realization of a cost-effective sensor based on ultrathin silicon nanowires (Si NWs) for the detection of nitrogen dioxide (NO2) is reported. A modification of the metal-assisted chemical etching method allows light-emitting silicon nanowires to be obtained through a fast, low-cost, and industrially compatible approach. NO2 is a well-known dangerous gas that, even wit…

Materials sciencePhotoluminescenceHigh interestGeneral Chemical EngineeringNanotechnology02 engineering and technology01 natural sciencesArticleHuman healthchemistry.chemical_compoundSilicon nanowires0103 physical sciencesGeneral Materials ScienceNitrogen dioxideSilicon nanowiresQD1-999Nitrogen dioxide010302 applied physicsGas sensing; Light-emission; Nitrogen dioxide; Silicon nanowiresLight-emission021001 nanoscience & nanotechnologyIsotropic etchingChemistrychemistryGas sensing Light-emission Nitrogen dioxide Silicon nanowiresLight emission0210 nano-technologyGas sensing
researchProduct

Fluorescent Biosensors Based on Silicon Nanowires

2021

Nanostructures are arising as novel biosensing platforms promising to surpass current performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for several nanosensors, the material and synthesis used make the industrial transfer of such technologies complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and arise as a hopeful solution to couple their interesting physical properties and surface-to-volume ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure affordability…

light-emissionFabricationMaterials scienceBiosensors Fluorescent sensors Light-emission Silicon nanowiresGeneral Chemical EngineeringData interpretationNanotechnologyReviewSubstrate (electronics)biosensorsSettore ING-INF/01 - ElettronicaFluorescencesilicon nanowiresChemistryNanosensorfluorescent sensorsGeneral Materials ScienceLight emissionSilicon nanowiresQD1-999BiosensorNanomaterials
researchProduct