Search results for "lipids"

showing 10 items of 2228 documents

Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine

2009

International audience; Rhamnolipids produced by the bacteria Pseudomonas aeruginosa are known as very efficient biosurfactant molecules. They are used for a wide range of industrial applications, especially in food, cosmetics and pharmaceutical formulations as well as in bioremediation of pollutants. In this paper, the role of rhamnolipids as novel molecules triggering defence responses and protection against the fungus Botrytis cinerea in grapevine is presented. The effect of rhamnolipids was assessed in grapevine using cell suspension cultures and vitro-plantlets. Ca2+ influx, mitogen-activated protein kinase activation and reactive oxygen species production form part of early signalling…

0106 biological sciencesPOTENTIATIONPhysiologyPlant ScienceFungusmedicine.disease_cause01 natural sciencesPSEUDOMONAS AERUGINOSAMicrobiologySurface-Active Agents03 medical and health sciencesBioremediationBOTRYTIS CINEREA[CHIM.ANAL]Chemical Sciences/Analytical chemistrySpore germinationmedicineGRAPEVINEVitis[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyBotrytis cinerea[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesbiologyPseudomonas aeruginosa[CHIM.ORGA]Chemical Sciences/Organic chemistryfungiPLANT DEFENCE[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyRHAMNOLIPIDESpores Fungalbiology.organism_classification[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM][SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacyRNA PlantCalciumBotrytisMAMPsGlycolipidsMitogen-Activated Protein KinasesReactive Oxygen SpeciesBacteria010606 plant biology & botany
researchProduct

Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum.

2014

International audience; Diatoms constitute a major phylum of phytoplankton biodiversity in ocean water and freshwater ecosystems. They are known to respond to some chemical variations of the environment by the accumulation of triacylglycerol, but the relative changes occurring in membrane glycerolipids have not yet been studied. Our goal was first to define a reference for the glycerolipidome of the marine model diatom Phaeodactylum tricornutum, a necessary prerequisite to characterize and dissect the lipid metabolic routes that are orchestrated and regulated to build up each subcellular membrane compartment. By combining multiple analytical techniques, we determined the glycerolipid profil…

0106 biological sciencesPhysiologyPlant ScienceThylakoids01 natural sciencesPhaeodactylum tricornutumTranscriptomeMGDGNutrientnutrient starvationLipids metabolismSettore BIO/04 - Fisiologia VegetaleDigalactosyldiacylglycerolPhospholipids0303 health sciencesbiologyNitrogen starvationmicroalgaeMonogalactosyldiacyglycerolPhosphorusArticlesAdaptation PhysiologicalBiochemistryThylakoidSulfoquinovosyldiacylglycerollipids (amino acids peptides and proteins)DGDGNitrogenchemistry.chemical_elementlipidsMembrane Lipids03 medical and health sciencesSQDG[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology14. Life underwaterPhaeodactylum tricornutumTriglycerides030304 developmental biologyDiatomsMembranesGene Expression ProfilingPhosphorusfungiPhosphorus starvationGlycerolipidsLipid metabolismmetabolic pathwaybiology.organism_classificationMetabolic pathwayPhosphatidylcholineDiatomchemistryPhytoplanktonLipidomics010606 plant biology & botany
researchProduct

Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes

1999

Using elicitins, proteins secreted by some phytopathogenic Oomycetes (Phytophthora) known to be able to transfer sterols between phospholipid vesicles, the transfer of sterols between micelles, liposomes and biological membranes was studied. Firstly, a simple fluorometric method to screen the sterol-carrier capacity of proteins, avoiding the preparation of sterolcontaining phospholipidic vesicles, is proposed. The transfer of sterols between DHE micelles (donor) and stigmasterol or cholesterol micelles (acceptor) was directly measured, as the increase in DHE fluorescence signal. The results obtained with this rapid and easy method lead to the same conclusions as those previously reported, u…

0106 biological sciencesPhytophthoraTime FactorsStigmasterolBiophysics01 natural sciencesMicelleBiochemistryFluorescenceFungal Proteins03 medical and health scienceschemistry.chemical_compoundErgosterolpolycyclic compoundsMicellesPlant Proteins030304 developmental biology0303 health sciencesLiposomeStigmasterolChemistryVesicleAlgal ProteinsCell MembraneProteinsElicitinBiological membraneLipid–protein interactionCell BiologyPlantsElicitinSterolsCholesterolMembraneBiochemistryDehydroergosterolLiposomeslipids (amino acids peptides and proteins)CryptogeinCarrier ProteinsFluorescence anisotropy010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins

1998

Some phytopathogenic fungi within Phytophthora species are unable to synthesize sterols and therefore must pick them up from the membranes of their host-plant, using an unknown mechanism. These pseudo-fungi secrete elicitins which are small hydrophilic cystein-rich proteins. The results show that elicitins studied interact with dehydroergosterol in the same way, but with some time-dependent differences. Elicitins have one binding site with a similar strong affinity for dehydroergosterol. Using a non-steroid hydrophobic fluorescent probe, we showed that phytosterols are able to similarly bind to elicitins. Moreover, elicitins catalyze sterol transfer between phospholipidic artificial membran…

0106 biological sciencesPhytophthora[SDV]Life Sciences [q-bio]Biophysics01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesNaphthalenesulfonatesErgosterolPlant defense against herbivoryExtracellularSecretionBinding sitePERSPECTIVEMolecular BiologyPhospholipidsComputingMilieux_MISCELLANEOUS030304 developmental biologyFluorescent Dyes0303 health sciencesBinding SitesbiologyfungiAlgal ProteinsPhytosterolsElicitinBiological TransportCell BiologyPlantsbiology.organism_classificationSterolCell biology[SDV] Life Sciences [q-bio]KineticsMembraneSpectrometry FluorescenceBiochemistryPhytophthoraCarrier Proteins010606 plant biology & botanyProtein Binding
researchProduct

From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms.

2002

Elicitins and lipid-transfer proteins are small cysteine-rich lipid-binding proteins secreted by oomycetes and plant cells, respectively, that share some structural and functional properties. In spite of intensive work on their structure and diversity at the protein and genetic levels, the precise biological roles of lipid-transfer proteins remains unclear, although the most recent data suggest a role in somatic embryogenesis, in the formation of protective surface layers and in defence against pathogens. By contrast, elicitins are known elicitors of plant defence, and recent work demonstrating that elicitins and lipid-transfer proteins share the same biological receptors gives a new perspe…

0106 biological sciencesSomatic embryogenesisProtein ConformationDefence mechanismsPlant ScienceBiology01 natural sciencesFungal Proteins03 medical and health sciencesErgosterolReceptor030304 developmental biologyPlant DiseasesPlant Proteins0303 health sciencesBinding proteinAlgal ProteinsLysophosphatidylcholinesProteinsElicitinAntigens PlantLipidsImmunity InnateBiochemistryOomycetesProtein-lipid complexStress MechanicalSignal transductionCarrier ProteinsPlant lipid transfer proteins010606 plant biology & botanySignal TransductionTrends in plant science
researchProduct

Ergosterol elicits oxidative burst in tobacco cells via phospholipase A2 and protein kinase C signal pathway

2004

Ergosterol, a typical fungal sterol, induced in tobacco (Nicotiana tabacum L. cv. Xanthi) suspension cells the synthesis of reactive oxygen species and alkalization of the external medium that are dependent on the mobilization of calcium from internal stores. We used specific inhibitors to elucidate the signal pathway triggered by ergosterol compared with cryptogein, a proteinaceous elicitor of Phytophthora cryptogea. HerbimycinA and genistein, inhibitors of tyrosine protein kinases, had no effect on the oxidative burst and pH changes induced by bothelicitors.Similarly,H-89,aninhibitorofproteinkinaseA,hadnoeffectontheinductionofthesedefensereactions.However,theresponse to both elicitors was…

0106 biological sciencesTime FactorsCell SurvivalPhysiologyPlant Science01 natural sciencesPhospholipases AFungal Proteins03 medical and health scienceschemistry.chemical_compoundPhospholipase A2ErgosterolPROTEINE KINASE CTobacco[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biologypolycyclic compoundsGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEnzyme InhibitorsEstrenesProtein kinase ACells CulturedProtein Kinase CProtein kinase CComputingMilieux_MISCELLANEOUS030304 developmental biologySulfonamides0303 health sciencesErgosterolbiologyPhospholipase CAlgal ProteinsNeomycinIsoquinolinesPyrrolidinonesSterolElicitorRespiratory burstOxidative StressPhospholipases A2chemistryBiochemistryType C Phospholipasesbiology.proteinlipids (amino acids peptides and proteins)Signal Transduction010606 plant biology & botany
researchProduct

Cytosolic calcium rises and related events in ergosterol-treated Nicotiana cells

2011

International audience; The typical fungal membrane component ergosterol was previously shown to trigger defence responses and protect plants against pathogens. Most of the elicitors mobilize the second messenger calcium, to trigger plant defences. We checked the involvement of calcium in response to ergosterol using Nicotiana plumbaginifolia and Nicotiana tabacum cv Xanthi cells expressing apoaequorin in the cytosol. First, it was verified if ergosterol was efficient in these cells inducing modifications of proton fluxes and increased expression of defence-related genes. Then, it was shown that ergosterol induced a rapid and transient biphasic increase of free [Ca2þ]cyt which intensity dep…

0106 biological sciencesTime FactorsPhysiologyNicotiana tabacumPlant SciencesterolsSecond Messenger Systemstobacco01 natural scienceschemistry.chemical_compoundCytosolpolycyclic compoundsPhosphorylationCalcium signalingreactive oxygen species0303 health sciencesErgosterolelicitorbiologyergosterolHydrogen-Ion ConcentrationPlants Genetically ModifiedRecombinant ProteinsCell biologyBiochemistrySecond messenger systemReactive oxygen species; Calcium signature; Elicitor; Signal transduction; MAPKs; tobaccolipids (amino acids peptides and proteins)Protonssignal transductionCell Survivalnicotiana plumbaginifoliachemistry.chemical_elementnicotiana tabacumoxydantCalciumcalcium signature03 medical and health sciencesAequorinMAPKsBAPTAGenetics[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCalcium Signaling030304 developmental biologyMitogen-Activated Protein Kinase KinasesCalcium metabolismHydrogen Peroxidebiochemical phenomena metabolism and nutritionbiology.organism_classificationCytosolchemistryCalciumApoproteins010606 plant biology & botany
researchProduct

Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells

1993

Tonoplast was prepared by osmotic lysis of a pure vacuolar fraction isolated from protoplasts derived from Acer pseudoplatanus cultured cells. After their extraction, neutral and polar lipids were separated by a thin layer chromatography. Phospholipids, glycolipids and neutral lipids represented 44.5%, 39.1% and 16.4% of total lipids, respectively. Sterols (glycosylated plus non-glycosylated forms) constituted 30.8% of total lipids; 75% of sterols were glycosylated. The most prominent lipids were phosphatidylethanolamine (20.8%), phosphatidylcholine (13.5%), ceramide monohexoside (12.8%), steryl glycoside (12.2%) and acylated steryl glycoside (10.9%). Glucose was the only sugar released by …

0106 biological sciences[SDV]Life Sciences [q-bio]BiophysicsPhospholipidBiology01 natural sciencesBiochemistry03 medical and health scienceschemistry.chemical_compoundEndocrinologyGlycolipidPhospholipase A2PhosphatidylcholineComputingMilieux_MISCELLANEOUS030304 developmental biologyOrganelleschemistry.chemical_classificationPhosphatidylethanolamine0303 health sciencesChromatographyFatty AcidsFatty acidGlycosideERABLE FAUX PLATANEPlantsLipidsSterol[SDV] Life Sciences [q-bio]chemistryBiochemistrybiology.proteinlipids (amino acids peptides and proteins)010606 plant biology & botany
researchProduct

Sterol and ecdysteroids profiles of Serratula tinctoria (L.) : plant and cell cultures producing steroids

1993

Abstract Cell suspension cultures have been obtained from Serratula tinctoria, a plant producing ecdysteroids. Sterol profiles and ecdysteroid contents have been analysed and compared in plants and cell cultures. In particular, the composition of free and esterified sterols was investigated using appropriate analytical techniques. In plants, esterified sterols were more abundant (50–70% of the total sterol) than in cell cultures (13–36%). A selectivity for sterol esterification was noted: in plants, the triterpenes (as amyrins) were esterified, whereas it was the 4-desmethylsterols (sitosterol and cholesterol) in cell cultures. Ecdysteroids were present in higher quantities in plant (0.1–1.…

0106 biological sciencesmedicine.medical_treatment[SDV]Life Sciences [q-bio]LathosterolBiology01 natural sciencesBiochemistrySteroidTerpene03 medical and health scienceschemistry.chemical_compoundSerratulapolycyclic compoundsmedicineMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesEcdysteroidCholesterolfungibiology.organism_classificationSterolSterol esterificationchemistryBiochemistryInsect Sciencelipids (amino acids peptides and proteins)010606 plant biology & botany
researchProduct

Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features

2018

6 p.-4 fig.

02 engineering and technologyEscherichia-coli010402 general chemistryCurvature01 natural sciencesBiochemistryCatalysisQuantitative Biology::Subcellular ProcessesColloid and Surface ChemistryNanosensorSpectroscopyPlasmonPhospholipidsHydrophobic residuesPlasmonic nanoparticlesChemistryScatteringSensorsGeneral ChemistryBinding021001 nanoscience & nanotechnology0104 chemical sciencesMembraneMembrane curvatureChemical physics0210 nano-technology
researchProduct