Search results for "low-rank"

showing 3 items of 3 documents

LOW-RANK APPROXIMATION BASED NON-NEGATIVE MULTI-WAY ARRAY DECOMPOSITION ON EVENT-RELATED POTENTIALS

2014

Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCP…

AdultMaleComputer Networks and CommunicationsEmotionsLow-rank approximationEmotional processingEvent-related potentialDecomposition (computer science)Feature (machine learning)HumansRepresentation (mathematics)ta515Mathematicsta113Depressionbusiness.industryGroup (mathematics)ElectroencephalographyPattern recognitionGeneral MedicineMiddle AgedFacial ExpressionAlgebraData Interpretation StatisticalBenchmark (computing)Evoked Potentials VisualFemaleArtificial intelligencebusinessInternational Journal of Neural Systems
researchProduct

Low-rank approximation based non-negative multi-way array decomposition on event-related potentials

2014

Non-negative tensor factorization (NTF) has been successfully applied to analyze event-related potentials (ERPs), and shown superiority in terms of capturing multi-domain features. However, the time-frequency representation of ERPs by higher-order tensors are usually large-scale, which prevents the popularity of most tensor factorization algorithms. To overcome this issue, we introduce a non-negative canonical polyadic decomposition (NCPD) based on low-rank approximation (LRA) and hierarchical alternating least square (HALS) techniques. We applied NCPD (LRAHALS and benchmark HALS) and CPD to extract multi-domain features of a visual ERP. The features and components extracted by LRAHALS NCPD…

low-rank approximationEvent-related potentialtensor decompositionnon-negative tensor factorizationmulti-domain featurenon-negative canonical polyadic decomposition
researchProduct

Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition with Spatial Sparsity Constraint

2022

Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI dat…

Rank (linear algebra)Computer scienceMatrix normlow-rankmatrix decompositionsymbols.namesaketoiminnallinen magneettikuvausOrthogonalitytensorsTensor (intrinsic definition)Kronecker deltaTucker decompositionHumansElectrical and Electronic Engineeringcore tensorsparsity constraintRadiological and Ultrasound Technologybusiness.industrysignaalinkäsittelyfeature extractionsparse matricesBrainPattern recognitionbrain modelingMagnetic Resonance Imagingfunctional magnetic resonance imagingComputer Science ApplicationsConstraint (information theory)data modelssymbolsNoise (video)Artificial intelligencebusinessmulti-subject fMRI dataSoftwareAlgorithmsTucker decomposition
researchProduct