Search results for "luokitus"
showing 10 items of 48 documents
TUTKA ja julkaisufoorumien muutos : mitä tapahtui historialle?
2014
Nykyaikaista aineistonkäsittelyä, painoväriä, erikoiskirjastoja : alkulehtiä Kari Aronpuron kollaasiromaanin uusiin tulkintoihin
2018
Unstable feature relevance in classification tasks
2011
Spectral imaging from UAVs under varying illumination conditions
2013
Abstract. Rapidly developing unmanned aerial vehicles (UAV) have provided the remote sensing community with a new rapidly deployable tool for small area monitoring. The progress of small payload UAVs has introduced greater demand for light weight aerial payloads. For applications requiring aerial images, a simple consumer camera provides acceptable data. For applications requiring more detailed spectral information about the surface, a new Fabry-Perot interferometer based spectral imaging technology has been developed. This new technology produces tens of successive images of the scene at different wavelength bands in very short time. These images can be assembled in spectral data cubes wit…
Updating strategies for distance based classification model with recursive least squares
2022
Abstract. The idea is to create a self-learning Minimal Learning Machine (MLM) model that is computationally efficient, easy to implement and performs with high accuracy. The study has two hypotheses. Experiment A examines the possibilities of introducing new classes with Recursive Least Squares (RLS) updates for the pre-trained self learning-MLM model. The idea of experiment B is to simulate the push broom spectral imagers working principles, update and test the model based on a stream of pixel spectrum lines on a continuous scanning process. Experiment B aims to train the model with a significantly small amount of labelled reference points and update it continuously with (RLS) to reach ma…
Investigating Novice Developers’ Code Commenting Trends Using Machine Learning Techniques
2023
Code comments are considered an efficient way to document the functionality of a particular block of code. Code commenting is a common practice among developers to explain the purpose of the code in order to improve code comprehension and readability. Researchers investigated the effect of code comments on software development tasks and demonstrated the use of comments in several ways, including maintenance, reusability, bug detection, etc. Given the importance of code comments, it becomes vital for novice developers to brush up on their code commenting skills. In this study, we initially investigated what types of comments novice students document in their source code and further categoriz…
What makes segmentation good? A case study in boreal forest habitat mapping
2013
Segmentation goodness evaluation is a set of approaches meant for deciding which segmentation is good. In this study, we tested different supervised segmentation evaluation measures and visual interpretation in the case of boreal forest habitat mapping in Southern Finland. The data used were WorldView-2 satellite imagery, a lidar digital elevation model (DEM), and a canopy height model (CHM) in 2 m resolution. The segmentation methods tested were the fractal net evolution approach (FNEA) and IDRISI watershed segmentation. Overall, 252 different segmentation methods, layers, and parameter combinations were tested. We also used eight different habitat delineations as reference polygons agains…
Automatic image‐based identification and biomass estimation of invertebrates
2020
Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identificat…
The Truth is Out There : Focusing on Smaller to Guess Bigger in Image Classification
2023
In Artificial Intelligence (AI) in general and in Machine Learning (ML) in particular, which are important and integral components of modern Industry 4.0, we often deal with uncertainty, e.g., lack of complete information about the objects we are classifying, recognizing, diagnosing, etc. Traditionally, uncertainty is considered to be a problem especially in the responsible use of AI and ML tools in the smart manufacturing domain. However, in this study, we aim not to fight with but rather to benefit from the uncertainty to improve the classification performance in supervised ML. Our objective is a kind of uncertainty-driven technique to improve the performance of Convolutional Neural Netwo…
Constructions, Claims, Resonance, Reflexivity: Language and Market Categorization
2020
doi: 10.1177/2631787720968561 Studies on market categorization exhibit substantial agreement that language plays a central role in articulating and constructing meanings among market participants and crafting consensus to produce a collective of interacting market actors. The purpose of this paper is to take stock of the growing body of research on language and market categories. This review has two aims. We begin by identifying how scholars have applied a variety of language constructs in category research, providing an understanding of the differences between these constructs and elaborating their uses and functions in the studies on market categorization. The second part of the review th…