Search results for "machine learning"
showing 10 items of 1464 documents
Network-Wide Adaptive Burst Detection Depicts Neuronal Activity with Improved Accuracy
2017
Neuronal networks are often characterized by their spiking and bursting statistics. Previously, we introducedan adaptive burst analysis methodwhich enhances the analysis power for neuronal networks with highly varying firing dynamics. The adaptation is based on single channels analyzing each element of a network separately. Such kind of analysis was adequate for the assessment of local behavior, where the analysis focuses on the neuronal activity in the vicinity of a single electrode. However, the assessment of the whole network may be hampered, if parts of the network are analyzed using different rules. Here, we test how using multiple channels and measurement time points affect adaptive b…
2019
As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call "snippets". These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…
Principal components analysis: theory and application to gene expression data analysis
2018
Advances in computational power have enabled research to generate significant amounts of data related to complex biological problems. Consequently, applying appropriate data analysis techniques has become paramount to tackle this complexity. However, theoretical understanding of statistical methods is necessary to ensure that the correct method is used and that sound inferences are made based on the analysis. In this article, we elaborate on the theory behind principal components analysis (PCA), which has become a favoured multivariate statistical tool in the field of omics-data analysis. We discuss the necessary prerequisites and steps to produce statistically valid results and provide gui…
Deep Learning Architectures for DNA Sequence Classification
2017
DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…
A deeper look into natural sciences with physics-based and data-driven measures
2021
Summary With the development of machine learning in recent years, it is possible to glean much more information from an experimental data set to study matter. In this perspective, we discuss some state-of-the-art data-driven tools to analyze latent effects in data and explain their applicability in natural science, focusing on two recently introduced, physics-motivated computationally cheap tools—latent entropy and latent dimension. We exemplify their capabilities by applying them on several examples in the natural sciences and show that they reveal so far unobserved features such as, for example, a gradient in a magnetic measurement and a latent network of glymphatic channels from the mous…
Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes
2020
In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of …
Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning
2018
Neural Plasticity, 2018
Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data
2019
AbstractRecently, focus on tick-borne diseases has increased as ticks and their pathogens have become widespread and represent a health problem in Europe. Understanding the epidemiology of tick-borne infections requires the ability to predict and map tick abundance. We measured Ixodes ricinus abundance at 159 sites in southern Scandinavia from August-September, 2016. We used field data and environmental variables to develop predictive abundance models using machine learning algorithms, and also tested these models on 2017 data. Larva and nymph abundance models had relatively high predictive power (normalized RMSE from 0.65–0.69, R2 from 0.52–0.58) whereas adult tick models performed poorly …
Objective Assessment of Nuclear and Cortical Cataracts through Scheimpflug Images: Agreement with the LOCS III Scale.
2016
Purpose To assess nuclear and cortical opacities through the objective analysis of Scheimpflug images, and to check the correlation with the Lens Opacity Classification System III (LOCS III). Methods Nuclear and cortical opacities were graded according to the LOCS III rules after pupil dilation. The maximum and average pixel intensity values along an elliptical mask within the lens nucleus were taken to analyse nuclear cataracts. A new metric based on the percentage of opaque pixels within a region of interest was used to analyse cortical cataracts. The percentage of opaque pixels was also calculated for half, third and quarter areas from the region of interest’s periphery. Results The maxi…
An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients
2019
Background: Chronic kidney disease (CKD) is an independent risk factor for atherosclerotic disease. We hypothesized that CKD promotes a proatherogenic lipid profile modifying lipoprotein composition and particle number. Methods: Cross-sectional study in 395 non-diabetic individuals (209 CKD patients and 186 controls) without statin therapy. Conventional lipid determinations were combined with advanced lipoprotein profiling by nuclear magnetic resonance, and their discrimination ability was assessed by machine learning. Results: CKD patients showed an increase of very-low-density (VLDL) particles and a reduction of LDL particle size. Cholesterol and triglyceride content of VLDLs and intermed…