Search results for "machine"
showing 10 items of 2592 documents
Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3
2012
Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …
Recent Advances in Techniques for Hyperspectral Image Processing
2009
International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
2016
Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information
2018
Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.
Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe
2021
Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…
Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations
2021
Abstract Estimation of Green Area Index (GAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from decametric satellites was investigated in this study using a large database of ground measurements over croplands. It covers six main crop types including rice, corn, wheat and barley, sunflower, soybean and other types of crops. Ground measurements were completed using either digital hemispherical cameras, LAI-2000 or AccuPAR devices over sites representative of a decametric pixel. Sites were spread over the globe and the data collected at several growth stages concurrently to the acquisition of Landsat-8 images. Several machine learning techniques were investigated to re…
2016
Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…
Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.
2019
Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…
Comparing methods for computation of run-up heights of landslide-generated tsunami in the Northern Sicily continental margin
2018
The North Sicily continental margin is a very active region located in the Central Mediterranean. Strong seismicity, active tectonics and volcanism, fluid escape, high sediment supply, and widespread mass movements historically have exposed this region to marine geohazards, with a potential for tsunami generation. Morpho-bathymetric analysis revealed that one of the most common mechanisms associated with marine geohazards is due to submarine mass failure processes, genetically linked to the other processes active in this margin. With the aim to assess the risks associated with landslide-generated anomalous waves, we selected two sectors of this margin, Gulf of Palermo to the west and Patti …