Search results for "machine"

showing 10 items of 2592 documents

Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3

2012

Abstract ESA's upcoming satellites Sentinel-2 (S2) and Sentinel-3 (S3) aim to ensure continuity for Landsat 5/7, SPOT-5, SPOT-Vegetation and Envisat MERIS observations by providing superspectral images of high spatial and temporal resolution. S2 and S3 will deliver near real-time operational products with a high accuracy for land monitoring. This unprecedented data availability leads to an urgent need for developing robust and accurate retrieval methods. Machine learning regression algorithms may be powerful candidates for the estimation of biophysical parameters from satellite reflectance measurements because of their ability to perform adaptive, nonlinear data fitting. By using data from …

010504 meteorology & atmospheric sciencesArtificial neural networkMean squared errorbusiness.industryComputer science0211 other engineering and technologiesSoil ScienceGeology02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesRegressionSupport vector machineTemporal resolutionGround-penetrating radarCurve fittingArtificial intelligenceComputers in Earth SciencesbusinessImage resolutioncomputer021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing of Environment
researchProduct

Recent Advances in Techniques for Hyperspectral Image Processing

2009

International audience; Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than thirty years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspec- tral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the high-dimensional nature of the data, and to integrate the spa- tial and spectral information. Performance of the discussed techniques is evaluated in …

010504 meteorology & atmospheric sciencesComputer science0211 other engineering and technologiesSoil ScienceImage processing02 engineering and technologyMachine learningcomputer.software_genre01 natural sciences[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingComputer visionComputers in Earth Sciences021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingData processingContextual image classificationbusiness.industryHyperspectral imagingGeologyImaging spectroscopyInformation extractionKernel methodSnapshot (computer storage)Artificial intelligencebusinesscomputer[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
researchProduct

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

2016

Abstract. Image processing of X-ray-computed polychromatic cone-beam micro-tomography (μXCT) data of geological samples mainly involves artefact reduction and phase segmentation. For the former, the main beam-hardening (BH) artefact is removed by applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. A Matlab code for this approach is provided in the Appendix. The final BH-corrected image is extracted from the residual data or from the difference between the surface elevation values and the original grey-scale values. For the segmentation, we propose a novel least-squar…

010504 meteorology & atmospheric sciencesComputer scienceStratigraphySoil ScienceImage processing010502 geochemistry & geophysicsResidual01 natural sciences550 Earth scienceslcsh:StratigraphyGeochemistry and PetrologyLeast squares support vector machineSegmentationlcsh:QE640-6990105 earth and related environmental sciencesEarth-Surface ProcessesPixelbusiness.industrylcsh:QE1-996.5PaleontologyGeologyPattern recognition550 Geowissenschaftenlcsh:GeologyData setSupport vector machineGeophysicsData pointArtificial intelligencebusinessSolid Earth
researchProduct

Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks

2020

Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…

010504 meteorology & atmospheric sciencesComputer sciencehyperspectral image classificationScience0211 other engineering and technologiesgeoinformatics02 engineering and technologyneuroverkot01 natural sciencesConvolutional neural networkpuulajitPARAMETERSSet (abstract data type)LIDARFORESTSClassifier (linguistics)021101 geological & geomatics engineering0105 earth and related environmental sciencesbusiness.industryDeep learningspektrikuvausQHyperspectral imagingdeep learningPattern recognition15. Life on landmiehittämättömät ilma-aluksetPerceptron113 Computer and information sciencesClass (biology)drone imagery3d convolutional neural networksmetsänarviointiMACHINEkoneoppiminentree species classification3D convolutional neural networksGeneral Earth and Planetary SciencesRGB color modelArtificial intelligencekaukokartoitusbusinesshyperspectral image classificationRemote Sensing
researchProduct

SVM-based classification of High resolution Urban Satellites Images using Dense SURF and Spectral Information

2018

Remote-sensing focusing on image classification knows a large progress and receives the attention of the remote-sensing community day by day. Combining many kinds of extracted features has been successfully applied to High resolution urban satellite images using support vector machine (SVM). In this paper, we present a methodology that is promoting a performed classification by using pixel-wise SURF description features combined with spectral information in Cielab space for the first time on common scenes of urban imagery. The proposed method gives a promising classification accuracy when compared with the two types of features used separately.

010504 meteorology & atmospheric sciencesContextual image classificationComputer sciencebusiness.industryComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION0211 other engineering and technologiesHigh resolutionPattern recognition02 engineering and technologySpace (commercial competition)01 natural sciencesSupport vector machineSatelliteArtificial intelligencebusiness021101 geological & geomatics engineering0105 earth and related environmental sciencesProceedings of the 12th International Conference on Intelligent Systems: Theories and Applications
researchProduct

Comparison of gap-filling techniques applied to the CCI soil moisture database in Southern Europe

2021

Abstract Soil moisture (SM) is a key variable that plays an important role in land-atmosphere interactions. Monitoring SM is crucial for many applications and can help to determine the impact of climate change. Therefore, it is essential to have continuous and long-term databases for this variable. Satellite missions have contributed to this; however, the continuity of the series is compromised due to the data gaps derived by different factors, including revisit time, presence of seasonal ice or Radio Frequency Interference (RFI) contamination. In this work, the applicability of different gap-filling techniques is evaluated on the ESA Climate Change Initiative (CCI) SM combined product, whi…

010504 meteorology & atmospheric sciencesDatabaseCorrelation coefficient0208 environmental biotechnologySoil ScienceGeology02 engineering and technologycomputer.software_genre01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringRandom forestSupport vector machineAutoregressive modelPrincipal component analysisPotential evaporationComputers in Earth Sciencescomputer0105 earth and related environmental sciencesMathematicsInterpolationRemote sensingRemote Sensing of Environment
researchProduct

Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations

2021

Abstract Estimation of Green Area Index (GAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from decametric satellites was investigated in this study using a large database of ground measurements over croplands. It covers six main crop types including rice, corn, wheat and barley, sunflower, soybean and other types of crops. Ground measurements were completed using either digital hemispherical cameras, LAI-2000 or AccuPAR devices over sites representative of a decametric pixel. Sites were spread over the globe and the data collected at several growth stages concurrently to the acquisition of Landsat-8 images. Several machine learning techniques were investigated to re…

010504 meteorology & atmospheric sciencesMean squared errorArtificial neural networkCalibration (statistics)0208 environmental biotechnologyEmpirical modellingSoil ScienceGeology02 engineering and technology01 natural sciencesNormalized Difference Vegetation Index020801 environmental engineeringSupport vector machineData pointKrigingComputers in Earth SciencesAlgorithm0105 earth and related environmental sciencesRemote sensingMathematicsRemote Sensing of Environment
researchProduct

2016

Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…

010504 meteorology & atmospheric sciencesMeteorologyFLUXNET0208 environmental biotechnology0207 environmental engineeringlcsh:Life02 engineering and technologySensible heatAtmospheric sciences7. Clean energy01 natural sciencesFlux (metallurgy)FluxNetMachine learning; Carbon fluxes; Energy fluxes; FLUXNET; Remote sensing; FLUXCOMlcsh:QH540-549.5Latent heatMachine learningCarbon fluxes020701 environmental engineeringEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesEarth-Surface ProcessesFLUXCOMMultivariate adaptive regression splineslcsh:QE1-996.5Empirical modellingPrimary production15. Life on landRemote sensingEnergy fluxes020801 environmental engineeringlcsh:Geologylcsh:QH501-531Kernel method13. Climate actionEnvironmental sciencelcsh:EcologyBiogeosciences
researchProduct

Global Sensitivity Analysis of Leaf-Canopy-Atmosphere RTMs: Implications for Biophysical Variables Retrieval from Top-of-Atmosphere Radiance Data.

2019

Knowledge of key variables driving the top of the atmosphere (TOA) radiance over a vegetated surface is an important step to derive biophysical variables from TOA radiance data, e.g., as observed by an optical satellite. Coupled leaf-canopy-atmosphere Radiative Transfer Models (RTMs) allow linking vegetation variables directly to the at-sensor TOA radiance measured. Global Sensitivity Analysis (GSA) of RTMs enables the computation of the total contribution of each input variable to the output variance. We determined the impacts of the leaf-canopy-atmosphere variables into TOA radiance using the GSA to gain insights into retrievable variables. The leaf and canopy RTM PROSAIL was coupled with…

010504 meteorology & atmospheric sciencesradiative transfer models0211 other engineering and technologiesemulation02 engineering and technologytop-of-atmosphere radiance data01 natural sciencesEmulation; Global sensitivity analysis; Machine learning; MODTRAN; PROSAIL; Radiative transfer models; Retrieval; Sentinel-2; Top-of-atmosphere radiance dataKrigingRange (statistics)Radiative transferLeaf area indexlcsh:Scienceretrieval021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingMODTRANPROSAILMODTRANAtmospheric correctionradiative transfer models; global sensitivity analysis; emulation; machine learning; top-of-atmosphere radiance data; PROSAIL; MODTRAN; retrieval; Sentinel-2machine learningglobal sensitivity analysisLookup tableRadianceGeneral Earth and Planetary SciencesEnvironmental sciencelcsh:QSentinel-2Remote sensing
researchProduct

Comparing methods for computation of run-up heights of landslide-generated tsunami in the Northern Sicily continental margin

2018

The North Sicily continental margin is a very active region located in the Central Mediterranean. Strong seismicity, active tectonics and volcanism, fluid escape, high sediment supply, and widespread mass movements historically have exposed this region to marine geohazards, with a potential for tsunami generation. Morpho-bathymetric analysis revealed that one of the most common mechanisms associated with marine geohazards is due to submarine mass failure processes, genetically linked to the other processes active in this margin. With the aim to assess the risks associated with landslide-generated anomalous waves, we selected two sectors of this margin, Gulf of Palermo to the west and Patti …

010504 meteorology & atmospheric sciencestsunami run-up submarine landslideLandslideVolcanismEnvironmental Science (miscellaneous)Induced seismicity010502 geochemistry & geophysicsGeotechnical Engineering and Engineering GeologyOceanography01 natural sciencesTectonicsContinental marginMargin (machine learning)Earth and Planetary Sciences (miscellaneous)Submarine pipelineSeismologyGeology0105 earth and related environmental sciencesSubmarine landslide
researchProduct