Search results for "machine"

showing 10 items of 2592 documents

Do Randomized Algorithms Improve the Efficiency of Minimal Learning Machine?

2020

Minimal Learning Machine (MLM) is a recently popularized supervised learning method, which is composed of distance-regression and multilateration steps. The computational complexity of MLM is dominated by the solution of an ordinary least-squares problem. Several different solvers can be applied to the resulting linear problem. In this paper, a thorough comparison of possible and recently proposed, especially randomized, algorithms is carried out for this problem with a representative set of regression datasets. In addition, we compare MLM with shallow and deep feedforward neural network models and study the effects of the number of observations and the number of features with a special dat…

0209 industrial biotechnologyrandom projectionlcsh:Computer engineering. Computer hardwareComputational complexity theoryComputer scienceRandom projectionlcsh:TK7885-789502 engineering and technologyMachine learningcomputer.software_genresupervised learningapproximate algorithmsSet (abstract data type)regressioanalyysi020901 industrial engineering & automationdistance–based regressionalgoritmit0202 electrical engineering electronic engineering information engineeringordinary least–squaresbusiness.industrySupervised learningsingular value decompositionminimal learning machineMultilaterationprojektioRandomized algorithmkoneoppiminenmachine learningScalabilityFeedforward neural network020201 artificial intelligence & image processingArtificial intelligenceapproksimointibusinesscomputerMachine Learning and Knowledge Extraction
researchProduct

Me, My Bot and His Other (Robot) Woman? Keeping Your Robot Satisfied in the Age of Artificial Emotion

2018

With a backdrop of action and science fiction movie horrors of the dystopian relationship between humans and robots, surprisingly to date-with the exception of ethical discussions-the relationship aspect of humans and sex robots has seemed relatively unproblematic. The attraction to sex robots perhaps is the promise of unproblematic affectionate and sexual interactions, without the need to consider the other&rsquo

0209 industrial biotechnologyuskottomuusControl and Optimizationlcsh:Mechanical engineering and machinery02 engineering and technologytekoälyemotions050105 experimental psychology020901 industrial engineering & automationtunteetsex0501 psychology and cognitive scienceslcsh:TJ1-1570Artificial emotionsRelation (history of concept)ta113Dystopiabusiness.industryMechanical Engineering05 social sciencesInformation technologyRoboticsartificial intelligencePreferenceAction (philosophy)seksirobotitRobotrobotsArtificial intelligenceinfidelitybusinessPsychologyCognitive psychology
researchProduct

An Artificial Bee Colony Approach for Classification of Remote Sensing Imagery

2018

This paper presents a novel Artificial Bee Colony (ABC) approach for supervised classification of remote sensing images. One proposes to apply an ABC algorithm to optimize the coefficients of the set of polynomial discriminant functions. We have experimented the proposed ABC-based classifier algorithm for a Landsat 7 ETM+ image database, evaluating the influence of the ABC model parameters on the classifier performances. Such ABC model parameters are: numbers of employed/onlooker/scout bees, number of epochs, and polynomial degree. One has compared the best ABC classifier Overall Accuracy (OA) with the performances obtained using a set of benchmark classifiers (NN, NP, RBF, and SVM). The re…

021103 operations researchArtificial neural networkComputer science0211 other engineering and technologies02 engineering and technologyArtificial bee colony algorithmSupport vector machineStatistical classificationAbc modelComputingMethodologies_PATTERNRECOGNITIONDiscriminant0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingDegree of a polynomialClassifier (UML)Remote sensing2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)
researchProduct

PolyACO+: a multi-level polygon-based ant colony optimisation classifier

2017

Ant Colony Optimisation for classification has mostly been limited to rule based approaches where artificial ants walk on datasets in order to extract rules from the trends in the data, and hybrid approaches which attempt to boost the performance of existing classifiers through guided feature reductions or parameter optimisations. A recent notable example that is distinct from the mainstream approaches is PolyACO, which is a proof of concept polygon-based classifier that resorts to ant colony optimisation as a technique to create multi-edged polygons as class separators. Despite possessing some promise, PolyACO has some significant limitations, most notably, the fact of supporting classific…

021103 operations researchArtificial neural networkComputer sciencebusiness.industryPolygonsTraining timeMulti-levelling0211 other engineering and technologiesPattern recognition02 engineering and technologyAnt colonySupport vector machineArtificial IntelligenceMultiple time dimensionsPolygonAnt colony optimisation0202 electrical engineering electronic engineering information engineeringArtificial Ants020201 artificial intelligence & image processingArtificial intelligenceClassificationsbusinessClassifier (UML)
researchProduct

A Novel Border Identification Algorithm Based on an “Anti-Bayesian” Paradigm

2013

Published version of a chapter in the book: Computer Analysis of Images and Patterns. Also available from the publisher at: http://dx.doi.org/10.1007/978-3-642-40261-6_23 Border Identification (BI) algorithms, a subset of Prototype Reduction Schemes (PRS) aim to reduce the number of training vectors so that the reduced set (the border set) contains only those patterns which lie near the border of the classes, and have sufficient information to perform a meaningful classification. However, one can see that the true border patterns (“near” border) are not able to perform the task independently as they are not able to always distinguish the testing samples. Thus, researchers have worked on thi…

021103 operations researchComputer scienceVDP::Mathematics and natural science: 400::Information and communication science: 420::Algorithms and computability theory: 4220211 other engineering and technologiesClass (philosophy)02 engineering and technologyField (computer science)Term (time)Support vector machineSet (abstract data type)Identification (information)Bayes' theoremCardinality0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingVDP::Mathematics and natural science: 400::Mathematics: 410::Algebra/algebraic analysis: 414InformationSystems_MISCELLANEOUSAlgorithm
researchProduct

Variable neighborhood descent for the incremental graph drawing

2017

Abstract Graphs are used to represent reality in several areas of knowledge. Drawings of graphs have many applications, from project scheduling to software diagrams. The main quality desired for drawings of graphs is readability, and crossing reduction is a fundamental aesthetic criterion for a good representation of a graph. In this paper we target the edge crossing reduction in the context of incremental graph drawing, in which we want to preserve the layout of a graph over successive drawings. We propose a hybrid method based on the GRASP (Greedy Randomized Adaptive Search Procedure) and VND (Variable Neighborhood Descent) methodologies and compare it with previous methods via simulation.

021103 operations researchTheoretical computer sciencebusiness.industryApplied MathematicsGRASP0211 other engineering and technologies010103 numerical & computational mathematics02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesReadabilitySoftwareGraph drawingDiscrete Mathematics and CombinatoricsArtificial intelligenceForce-directed graph drawing0101 mathematicsbusinessGraph operationsMetaheuristiccomputerGreedy randomized adaptive search procedureMathematicsofComputing_DISCRETEMATHEMATICSMathematicsElectronic Notes in Discrete Mathematics
researchProduct

On Detection of Network-Based Co-residence Verification Attacks in SDN-Driven Clouds

2017

Modern cloud environments allow users to consume computational and storage resources in the form of virtual machines. Even though machines running on the same cloud server are logically isolated from each other, a malicious customer can create various side channels to obtain sensitive information from co-located machines. In this study, we concentrate on timely detection of intentional co-residence attempts in cloud environments that utilize software-defined networking. SDN enables global visibility of the network state which allows the cloud provider to monitor and extract necessary information from each flow in every virtual network in online mode. We analyze the extracted statistics on d…

021110 strategic defence & security studiesbusiness.industryComputer scienceVisibility (geometry)0211 other engineering and technologiesBotnetCloud computingcloud environments02 engineering and technologycomputer.software_genrepilvipalvelutInformation sensitivityMode (computer interface)Virtual machine0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingState (computer science)co-residence detectiontietoturvavirtual networksbusinessVirtual networkcomputerComputer network
researchProduct

Kick Detection and Influx Size Estimation during Offshore Drilling Operations using Deep Learning

2019

An uncontrolled or unobserved influx or kick during drilling has the potential to induce a well blowout, one of the most harmful incidences during drilling both in regards to economic and environmental cost. Since kicks during drilling are serious risks, it is important to improve kick and loss detection performance and capabilities and to develop automatic flux detection methodology. There are clear patterns during a influx incident. However, due to complex processes and sparse instrumentation it is difficult to predict the behaviour of kicks or losses based on sensor data combined with physical models alone. Emerging technologies within Deep Learning are however quite adapt at picking up …

021110 strategic defence & security studiesgeographygeography.geographical_feature_categoryArtificial neural networkComputer sciencebusiness.industryDeep learning0211 other engineering and technologiesDrilling0102 computer and information sciences02 engineering and technology01 natural sciencesWellboreVDP::Teknologi: 500Drilling machines010201 computation theory & mathematicsInstrumentation (computer programming)Artificial intelligencebusinessOffshore drillingMarine engineeringWater well2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA)
researchProduct

Intelligence artificielle : quel avenir en anatomie pathologique ?

2019

Resume Les techniques d’intelligence artificielle et en particulier les reseaux de neurones profonds (Deep Learning) sont en pleine emergence dans le domaine biomedical. Les reseaux de neurones s’inspirent du modele biologique, ils sont interconnectes entre eux et suivent des modeles mathematiques. Lors de l’utilisation des reseaux de neurones artificiels, deux phases sont necessaires : une phase d’apprentissage et une phase d’exploitation. Les deux principales applications sont la classification et la regression. Des outils informatiques comme les processeurs graphiques accelerateurs de calcul ou des bibliotheques de developpement specifiques ont donne un nouveau souffle a ces techniques. …

0301 basic medicine03 medical and health sciences030104 developmental biology0302 clinical medicine[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]030220 oncology & carcinogenesisComputingMilieux_MISCELLANEOUS3. Good healthPathology and Forensic MedicineAnnales de Pathologie
researchProduct

Effect of various dentin disinfection protocols on the bond strength of resin modified glass ionomer restorative material.

2017

Background Disinfection of dentin surface prior to any restorative therapy is important for the longevity of the treatment rendered. However, these dentin disinfection methods should itself not interfere with the adhesion of the restorative material. Therefore the aim of this study was to determine the effect of various dentin disinfection protocols on the shear bond strength (SBS) of resin modified glass ionomer cement (RMGIC). Material and methods The occlusal surface of 40 extracted premolars were trimmed to obtain a flat dentinal surface and was randomly divided into four groups. CTRL was the control group; NaOCl was 1% sodium hypochlorite disinfection group; CHX was 2% chlorhexidine di…

0301 basic medicine030103 biophysicsGlass ionomer cementDentistryOperative Dentistry and Endodontics03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemmedicineDentinGeneral DentistryUniversal testing machineBond strengthbusiness.industryResearchChlorhexidineResin modified030206 dentistry:CIENCIAS MÉDICAS [UNESCO]medicine.anatomical_structurechemistrySodium hypochloriteUNESCO::CIENCIAS MÉDICASRestorative materialbusinessmedicine.drugJournal of clinical and experimental dentistry
researchProduct