Search results for "macropore"
showing 10 items of 33 documents
Silica-based macrocellular foam monoliths with hierarchical trimodal pore systems
2005
Abstract Silica-based large monoliths exhibiting a trimodal hierarchical pore system have been successfully prepared through a nanotectonic approach starting from sub-micro/nanometric mesoporous particles (as building blocks), and using a polyurethane foam as macrotemplate. Large trimodal pieces with macrocellular like interconnected macropores in the micrometer range are a mineralized replica of the polyurethane foam. Textural large-mesopores/macropores (in the 20–70 nm range) have their origin in the inter-particle voids. The small intra-particle mesopore system (with pore diameters around 2–3 nm) is due to the supramolecular templating effect of the surfactant.
Comprehensive pore structure characterization of silica monoliths with controlled mesopore size and macropore size by nitrogen sorption, mercury poro…
2005
The porosity of monolithic silica columns is measured by using different analytical methods. Two sets of monoliths were prepared with a given mesopore diameter of 10 and 25 nm, respectively and with gradated macropore diameters between 1.8 and 7.5 microm. After preparing the two sets of monolithic silica columns with different macro- and mesopores the internal, external and total porosity of these columns are determined by inverse size-exclusion chromatography (ISEC) using polystyrene samples of narrow molecular size distribution and known average molecular weight. The ISEC data from the 4.6 mm analytical monolithic silica columns are used to determine the structural properties of monolithi…
Standardizing the use of fast-field cycling NMR relaxometry for measuring hydrological connectivity inside the soil
2019
Hydrological connectivity inside the soil (HCS) is applied to study the effects of heterogeneities in complex environmental systems. It refers to both the spatial patterns inside the soil (i.e., structural connectivity [SC]) and the physical–chemical processes at a molecular level (i.e., functional connectivity [FC]). NMR relaxometry has been already applied to assess both SC and FC components of the HCS by defining SC and FC indexes. Here, fast-field cycling NMR relaxometry has been applied on a water suspended soil and a sediment to optimize the conditions to standardize the technique. Proton Larmor frequencies (ωL) from 0.01 to 25 MHz were used on samples suspended in three different rat…
Multilayer modified NH<inf>4</inf>NO<inf>3</inf> granules with 3D nanoporous structure: Effect of the heat treatment regime o…
2017
The article is devoted to the investigation of the structure of macro- and mesopores on the surface and inside of modified NH4NO3 granules. The main quality indicators of modified NH4NO3 granules are presented and the relationship between the nanoporous structure of granules and the quality indicators is shown. Various thermodynamic conditions for obtaining a nanoporous structure of the surface and internal layers during the modification of granules are considered. The optimal regime for the uniformity of the temperature distribution in the vortex granulator is the regime of mixed motion of the drying agent. In this mode, mainly “modification” pores are formed, “mechanical” pores due to the…
Porous structure of Purevision™ versus Focus® Night&Day™ and conventional hydrogel contact lenses
2002
The surface and bulk structures of hydrogel contact lenses that contain siloxane moieties, Purevision™ (balafilcon A) and Focus®Night&Day™ (lotrafilcon A), were investigated. Standard hydrogel lenses of low (Seequence®), medium (Acuvue®), and high water content (Precision UV®) were used as controls. All the lenses were dehydrated in a series of ethanol solutions of increased concentration, critical-point dried in CO2, and sputter coated with gold/palladium before they were examined by scanning electron microscopy. Of all lenses examined, only the balafilcon lenses presented, in addition to the polymer network porosity characteristic of all hydrogels, a macroporous structure that was observe…
Photocatalytic H2 production over inverse opal TiO2 catalysts
2019
Abstract The influence of BiVO4 and CuO on the chemico-physical properties of TiO2-based systems is reported. The performances of these systems were investigated in the photocatalytic H2 production both under UV and solar light irradiation. The characterization data pointed out that the obtained TiO2 samples have highly porous inverse opal structures with interconnected macropores. Inverse opal TiO2 exhibited higher activity in the H2 production than the commercial TiO2 due to the peculiar porosity that allows photons to enter inside the photocatalyst. A further improvement in terms of photoactivity was verified by addition of increasing amounts of BiVO4. On the contrary a small CuO content…
Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes
2008
Nanoparticulated bimodal porous silicas (NBSs) with pore systems structured at two length scales (meso- and large-meso-/macropores) have been prepared through a one-pot surfactant-assisted procedure by using a simple template agent and starting from silicon atrane complexes as hydrolytic inorganic precursors. The final bulk materials are constructed by an aggregation of pseudospherical mesoporous primary nanoparticles process, over the course of which the interparticle (textural) large pore system is generated. A fine-tuning of the procedural variables allows not only an adjustment of the processes of nucleation and growth of the primary nanoparticles but also a modulation of their subseque…
The effect of ant mounds on overland flow and soil erodibility following a wildfire in eastern Spain
2010
This study examines the soil hydrological and erosional effects of ant mounds during summer and winter conditions following a wildfire in scrub terrain in eastern Spain. Forty rainfall simulations (1 m2 plots, 1 h duration, 78 mm h−1 intensity) were carried out over plots with mounds (n = 20) and mound-free control plots (n = 20) in August 2002, and repeated in December. By winter, some of the mound material had been removed and some vegetation regrowth occurred. Overall, mound presence increased soil erodibility in summer and winter due to the availability of highly erodible mound material. However, mound plots showed higher mean overland flow rates in summer (10·1 vs 6·9% for control plot…
Shear strength of a compacted scaly clay in variable saturation conditions
2015
Scaly clays are stiff and highly fissured clays often used as construction materials. This paper presents the results of triaxial compression tests carried out on saturated and unsaturated samples of a compacted scaly clay. Complementary investigation on the microstructural features and their evolution with the amount of water stored into the material are also presented in order to shed light on the evolution of the micro- and macroporosity with suction. The water retention behaviour of the compacted scaly clay is also addressed. The results from the controlled suction triaxial tests are used to discuss the applicability of a single-shear strength criterion to compacted double-structured cl…
Response of soil bacteria to Hg (II) in relation to soil characteristics and cell location
2006
The response of indigenous bacterial communities to the addition of inorganic mercury (50 μM of Hg(II)) was compared over a 30 day period in four soils of contrasting properties. Hg(II) impact was estimated by following population dynamics of viable heterotrophic bacteria (VH) and mercury resistant bacteria (HgR) by indirect enumeration in unfractionated soil and in the inner and outer parts of soil aggregates obtained by successive washings. Numbers of VH bacteria in unfractionated soils were not affected by mercury in any of the studied soils, whereas an increase in resistant bacteria was observed in all of them. The lag phase before the increase of HgR bacteria and the magnitude of the e…