Search results for "magnetization dynamics"

showing 10 items of 35 documents

Direct imaging of delayed magneto-dynamic modes induced by surface acoustic waves.

2017

The magnetoelastic effect—the change of magnetic properties caused by the elastic deformation of a magnetic material—has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magne…

Materials scienceMagnetic domainScienceGeneral Physics and Astronomy02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleMagnetizationCondensed Matter::Materials ScienceMagneticsOpticsNickel0103 physical sciencesotorhinolaryngologic diseases010306 general physicslcsh:ScienceMagnetoMagnetization dynamicsMultidisciplinaryCondensed matter physicsbusiness.industryCircular DichroismX-RaysQSurface acoustic waveMagnetostrictionGeneral ChemistryAcoustic wave021001 nanoscience & nanotechnologyequipment and suppliesMagnetic fieldNanostructuresMicroscopy ElectronSoundlcsh:Q0210 nano-technologybusinesshuman activitiesNature communications
researchProduct

Current-Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures.

2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Magnetic skyrmions promise breakthroughs in future memory and computing devices due to their inherent stability and small size. Their creation and current driven motion have been recently observed at room temperature, but the key mechanisms of their formation are not yet well-understood. Here it is shown that in heavy metal/ferromagnet heterostructures, pulsed currents can drive morphological transitions between labyrinth-like, stripe-like, and skyrmionic states. Using high-resolution X-ray microscopy, the spin texture evolution with temperature and magnetic field is imaged and it is demonstrated that with transient Joule heating, topologica…

Materials scienceMagnetic domainskyrmionsmultilayersperpendicular magnetic anisotropyDzyaloshinkii-Moriya interaction02 engineering and technologymagnetic domains01 natural sciencesEngineering0103 physical sciencesddc:530General Materials ScienceNanoscience & Nanotechnology010306 general physicsSpin-½Magnetization dynamicsCondensed matter physicsTexture (cosmology)Mechanical EngineeringSkyrmion021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMagnetic fieldFerromagnetismMechanics of MaterialsPhysical SciencesChemical Sciences0210 nano-technologyJoule heating
researchProduct

Magnetization dynamics in polycrystalline Permalloy and epitaxial Co platelets observed by time-resolved photoemission electron microscopy

2009

We studied the dynamic magnetization response in rectangular polycrystalline Permalloy and also epitaxial Co structures (lateral sizes comprised tens of microns at a thickness of tens of nanometers) during the action of a magnetic field pulse, using time-resolved X-ray photoemission electron microscopy with a time resolution of 10 ps. In the case of Permalloy platelets the restoring torque that is necessary for the stroboscopic image acquisition is provided by the Landau flux closure structure representing a minimum of the free energy. We investigated the dynamic response of 90° Neel domain walls. The main results are: the maximum velocity of the domain wall is 1.5 × 104 m/s, the intrinsic …

PermalloyCondensed Matter::Materials SciencePhotoemission electron microscopyMagnetization dynamicsMagnetizationMagnetic anisotropyDomain wall (magnetism)Condensed matter physicsChemistryCondensed Matter PhysicsAnisotropyElectronic Optical and Magnetic MaterialsMagnetic fieldphysica status solidi (b)
researchProduct

Time-resolved X-ray photoemission electron microscopy: imaging magnetodynamics on the 100 ps scale and below

2005

Abstract We present recent results of time-resolved X-ray photoemission electron microscopy (TR-XPEEM) investigations on magnetic systems. Our studies of microstructured permalloy particles employ a magnetic pump XPEEM probe approach. The stroboscopic experiments feature a time resolution of Δ τ ≤ 130  ps and yield magnetic domain images with a surprising richness of details. We observe a strong influence of incoherent magnetization rotation processes, which lead to complicated transient domain structures with a blocked relaxation behavior.

PermalloyMagnetization dynamicsRadiationMagnetic domainChemistryInverse photoemission spectroscopyAngle-resolved photoemission spectroscopyCondensed Matter PhysicsMolecular physicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionMagnetizationPhotoemission electron microscopyNuclear magnetic resonancelawPhysical and Theoretical ChemistryElectron microscopeSpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Orbitronics: orbital currents in solids

2021

In solids, electronic Bloch states are formed by atomic orbitals. While it is natural to expect that orbital composition and information about Bloch states can be manipulated and transported, in analogy to the spin degree of freedom extensively studied in past decades, it has been assumed that orbital quenching by the crystal field prevents significant dynamics of orbital degrees of freedom. However, recent studies reveal that an orbital current, given by the flow of electrons with a finite orbital angular momentum, can be electrically generated and transported in wide classes of materials despite the effect of orbital quenching in the ground state. Orbital currents also play a fundamental …

PhysicsCondensed Matter - Materials ScienceMagnetization dynamicsAngular momentumCondensed Matter - Mesoscale and Nanoscale PhysicsField (physics)Condensed matter physicsMagnetism530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and Astronomy530 PhysikAtomic orbitalHall effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin Hall effectAstrophysics::Earth and Planetary AstrophysicsSpin (physics)
researchProduct

Spin transfer torques and spin-dependent transport in a metallic F/AF/N tunneling junction

2018

We study spin-dependent electron transport through a ferromagnetic-antiferromagnetic-normal metal tunneling junction subject to a voltage or temperature bias, in the absence of spin-orbit coupling. We derive microscopic formulas for various types of spin torque acting on the antiferromagnet as well as for charge and spin currents flowing through the junction. The obtained results are applicable in the limit of slow magnetization dynamics. We identify a parameter regime in which an unconventional damping-like torque can become comparable in magnitude to the equivalent of the conventional Slonczewski's torque generalized to antiferromagnets. Moreover, we show that the antiferromagnetic sublat…

PhysicsCouplingMagnetization dynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsConductanceFOS: Physical sciencesCharge (physics)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energyFerromagnetism0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)AntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyQuantum tunnellingSpin-½
researchProduct

Nonlinear spin torque, pumping, and cooling in superconductor/ferromagnet systems

2020

We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor containing a steady spin-splitting field. We predict how this system exhibits a non-linear spin torque, which can be driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat and spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity on the precession damping and th…

PhysicsCouplingSuperconductivityMagnetization dynamicssuprajohtavuusCondensed matter physicsField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsnanoelektroniikkamagneetitFOS: Physical sciencesspin transfer torque02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanomagnetsuprajohteetMagnetization0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Precessionspin caloritronics010306 general physics0210 nano-technologySpin (physics)Physical Review B
researchProduct

Roles of chiral renormalization on magnetization dynamics in chiral magnets

2018

In metallic ferromagnets, the interaction between local magnetic moments and conduction electrons renormalizes parameters of the Landau-Lifshitz-Gilbert equation such as the gyromagnetic ratio and the Gilbert damping, and makes them dependent on the magnetic configurations. Although the effects of the renormalization for nonchiral ferromagnets are usually minor and hardly detectable, we show that the renormalization does play a crucial role for chiral magnets. Here the renormalization is chiral and as such we predict experimentally identifiable effects on the phenomenology of magnetization dynamics. In particular, our theory for the self-consistent magnetization dynamics of chiral magnets a…

PhysicsMagnetization dynamicsCondensed Matter - Materials ScienceMagnetic momentCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGyromagnetic ratioHigh Energy Physics::LatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyElectronPhysik (inkl. Astronomie)021001 nanoscience & nanotechnologyThermal conduction01 natural sciences3. Good healthRenormalizationFerromagnetismMagnet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technology
researchProduct

Dynamical and current-induced Dzyaloshinskii-Moriya interaction: Role for damping, gyromagnetism, and current-induced torques in noncollinear magnets

2020

Both applied electric currents and magnetization dynamics modify the Dzyaloshinskii-Moriya interaction (DMI), which we call current-induced DMI (CIDMI) and dynamical DMI (DDMI), respectively. We report a theory of CIDMI and DDMI. The inverse of CIDMI consists in charge pumping by a time-dependent gradient of magnetization ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$, while the inverse of DDMI describes the torque generated by ${\ensuremath{\partial}}^{2}\mathbit{M}(\mathbit{r},t)/\ensuremath{\partial}\mathbit{r}\ensuremath{\partial}t$. In noncollinear magnets, CIDMI and DDMI depend on the local magnetization direction. The re…

PhysicsMagnetization dynamicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetismInverseFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Other Condensed MatterMagnetizationFerromagnetismReciprocity (electromagnetism)Magnet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:530Electric current010306 general physics0210 nano-technologyOther Condensed Matter (cond-mat.other)
researchProduct

Magnetization dynamics in microscopic spin-valve elements: Shortcomings of the macrospin picture

2007

We have studied ultrafast magnetodynamics in micropatterned spin-valve structures using time-resolved x-ray photoemission electron microscopy combined with x-ray magnetic circular dichroism. Exciting the system with ultrafast field pulses of $250\phantom{\rule{0.3em}{0ex}}\mathrm{ps}$ width, we find the dynamic response of the free layer to fall into two distinctly different contributions. On the one hand, it exhibits localized spin wave modes that strongly depend on the shape of the micropattern. A field pulse applied perpendicular to the exchange bias field along the diagonal of a square pattern leads to the excitation of a standing spin wave mode with two nodes along the field direction.…

PhysicsMagnetization dynamicsCondensed matter physicsField (physics)Magnetic circular dichroismSpin valveCondensed Matter PhysicsJElectronic Optical and Magnetic MaterialsPhotoemission electron microscopyExchange biasSpin waveddc:530ExcitationPhysical Review B
researchProduct