6533b855fe1ef96bd12b1523

RESEARCH PRODUCT

Nonlinear spin torque, pumping, and cooling in superconductor/ferromagnet systems

Risto OjajärviJuuso ManninenTero T. HeikkiläPauli Virtanen

subject

PhysicsCouplingSuperconductivityMagnetization dynamicssuprajohtavuusCondensed matter physicsField (physics)Condensed Matter - Mesoscale and Nanoscale PhysicsnanoelektroniikkamagneetitFOS: Physical sciencesspin transfer torque02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanomagnetsuprajohteetMagnetization0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Precessionspin caloritronics010306 general physics0210 nano-technologySpin (physics)

description

We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor containing a steady spin-splitting field. We predict how this system exhibits a non-linear spin torque, which can be driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat and spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity on the precession damping and the anti-damping torques. We also predict the full non-linear characteristic of the Onsager counterparts of the torque, showing up via pumped charge and heat currents. For the latter, we predict a spin-pumping cooling effect, where the magnetization dynamics can cool either the nanomagnet or the superconductor.

10.1103/physrevb.101.115406http://dx.doi.org/10.1103/physrevb.101.115406