Search results for "magnetostriction"

showing 10 items of 23 documents

Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO

2021

As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…

010302 applied physicsCondensed Matter - Materials ScienceMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Science0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsCrystallite0210 nano-technologyAnisotropySaturation (magnetic)Spin-½Applied Physics Letters
researchProduct

Piezo-electrical control of gyration dynamics of magnetic vortices

2019

In this work, we first statically image the electrically controlled magnetostatic configuration of magnetic vortex states and then we dynamically image the time-resolved vortex core gyration tuned by electric fields. We demonstrate the manipulation of the vortex core gyration orbit by engineering the magnetic anisotropies. We achieve this by electric fields in a synthetic heterostructure consisting of a piezoelement coupled with magnetostrictive microstructures, where the magnetic anisotropy can be controlled by strain. We directly show the strong impact of the tailored anisotropy on the static shape of the vortex state and the dynamic vortex core orbit. The results demonstrate the possibil…

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Condensed matter physicsMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesGyrationVortex stateVortexCondensed Matter::Materials ScienceMagnetic anisotropyCondensed Matter::SuperconductivityElectric field0103 physical sciencesOrbit (dynamics)0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

Fundamental Noise Limits and Sensitivity of Piezoelectrically Driven Magnetoelastic Cantilevers

2020

International audience; Magnetoelastic sensors for the detection of low-frequency and low-amplitude magnetic fields are in the focus of research for more than 30 years. In order to minimize the limit of detection (LOD) of such sensor systems, it is of high importance to understand and to be able to quantify the relevant noise sources. In this contribution, cantilever-type electromechanical and magnetoelastic resonators, respectively, are comprehensively investigated and mathematically described not only with regard to their phase sensitivity but especially to the extent of the sensor-intrinsic phase noise. Both measurements and calculations reveal that the fundamental LOD is limited by addi…

010302 applied physicsPhysics[SPI.OTHER]Engineering Sciences [physics]/OtherCantileverMagnetic domainMechanical EngineeringAcousticsMagnetostriction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldVibrationResonatorMagnet0103 physical sciencesPhase noiseElectrical and Electronic Engineering0210 nano-technology
researchProduct

Fibre Bragg gratings tuned and chirped using magnetic fields

1997

The authors report on the use of magnetic fields in conjunction with magnetostrictive materials for tuning and chirping optical fibre Bragg gratings. The Bragg wavelength shifts as a consequence of the strain induced in the fibre by a magnetostrictive rod when a magnetic field is applied. A tuning range of 1.1 nm has been achieved by a magnetic field of 103 mT and the grating has been chirped by applying non-uniform magnetic fields.

Camps magnèticsPHOSFOSOptical fiberMaterials sciencebusiness.industryPhysics::OpticsMagnetostrictionÒpticaGratinglaw.inventionMagnetic fieldSubwavelength-diameter optical fibreCondensed Matter::Materials ScienceOpticsFiber Bragg gratinglawChirpOptoelectronicsPhysics::Atomic PhysicsElectrical and Electronic EngineeringbusinessElectronics Letters
researchProduct

Full angular dependence of the spin Hall and ordinary magnetoresistance in epitaxial antiferromagnetic NiO(001)/Pt thin films

2018

We report the observation of the three-dimensional angular dependence of the spin Hall magnetoresistance (SMR) in a bilayer of the epitaxial antiferromagnetic insulator NiO(001) and the heavy metal Pt, without any ferromagnetic element. The detected angular-dependent longitudinal and transverse magnetoresistances are measured by rotating the sample in magnetic fields up to 11 T, along three orthogonal planes (xy-, yz- and xz-rotation planes, where the z-axis is orthogonal to the sample plane). The total magnetoresistance has contributions arising from both the SMR and ordinary magnetoresistance. The onset of the SMR signal occurs between 1 and 3 T and no saturation is visible up to 11 T. Th…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicsMagnetoresistance530 PhysicsNon-blocking I/OMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesMagnetostrictionInsulator (electricity)02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy530 Physik01 natural sciencesCondensed Matter::Materials ScienceAmplitude0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsThin film010306 general physics0210 nano-technology
researchProduct

X-ray investigation and discussion of the magnetostriction of Gd3T(T= Ni, Rh, Irx) single crystals

2000

The variations of the lattice parameters of Gd3T(T= Ni, Rh, Irx) single crystals with temperature were measured in the range 10–300 K. The compounds with Ni and Rh crystallize in the orthorhombic space groupPnma, but the compound with Ir crystallizes as Gd5Ir2in the monoclinic space groupA2/a. The three compounds exhibit an anomalous anisotropic spontaneous magnetostriction below the magnetic ordering temperature.

CrystallographyChemistryX-rayMagnetostrictionOrthorhombic crystal systemCrystal structureAnisotropyNéel temperatureGeneral Biochemistry Genetics and Molecular BiologyThermal expansionMonoclinic crystal systemJournal of Applied Crystallography
researchProduct

Electrically Driven Magnetic Domain Wall Rotation in Multiferroic Heterostructures to Manipulate Suspended On-Chip Magnetic Particles

2015

In this work, we experimentally demonstrate deterministic electrically driven, strain-mediated domain wall (DW) rotation in ferromagnetic Ni rings fabricated on piezoelectric [Pb(Mg1/3Nb2/3)O3]0.66-[PbTiO3]0.34 (PMN-PT) substrates. While simultaneously imaging the Ni rings with X-ray magnetic circular dichroism photoemission electron microscopy, an electric field is applied across the PMN-PT substrate that induces strain in the ring structures, driving DW rotation around the ring toward the dominant PMN-PT strain axis by the inverse magnetostriction effect. The DW rotation we observe is analytically predicted using a fully coupled micromagnetic/elastodynamic multiphysics simulation, which v…

Domain wall (magnetism)Materials scienceFerromagnetismMagnetic domainCondensed matter physicsMagnetic circular dichroismElectric fieldGeneral EngineeringGeneral Physics and AstronomyMagnetic nanoparticlesGeneral Materials ScienceMagnetostrictionRotationACS Nano
researchProduct

Dynamic Preisach Hysteresis Model for Magnetostrictive Materials for Energy Application

2013

In this paper the magnetostrictive material considered is Terfenol-D. Its hysteresis is modeled by applying the DPM whose identification procedure is performed by using a neural network procedure previously publised [. The neural network used is a multiplayer perceptron trained with the Levenberg-Marquadt training algorithm. This allows to obtain the Preisach distribution function, without any special conditioning of the measured data, owing to the filtering capabilities of the neural network interpolators. The model is able to reconstruct both the magnetization relation and the Field-strain relation. The model is validated through comparison and prediction of data collected from a typical …

Electric machinePreisach model of hysteresisEngineeringbusiness.product_categoryArtificial neural networkbusiness.industryMagnetostrictionGeneral MedicinePerceptronHysteresisTransducerControl theorybusinessEnergy (signal processing)Applied Mechanics and Materials
researchProduct

The cage elasticity and under-field structure of concentrated magnetic colloids probed by small angle X-ray scattering

2013

International audience; In the present study we probe the bulk modulus and the structure of concentrated magnetic fluids by small angle X-ray scattering. The electrostatically stabilized nanoparticles experience a repulsive interparticle potential modulated by dipolar magnetic interactions. On the interparticle distance length scale, we show that nanoparticles are trapped under-field in oblate cages formed by their first neighbours. We propose a theoretical model of magnetostriction for the field-induced deformation of the cage. This model captures the anisotropic features of the experimentally observed scattering pattern on the local scale in these strongly interacting colloidal dispersions

Length scaleCondensed Matter::Quantum GasesBulk modulusMaterials scienceCondensed matter physicsScatteringSmall-angle X-ray scatteringMagnetostriction02 engineering and technologyGeneral ChemistryElasticity (physics)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Soft Condensed MatterDipoleCrystallography0103 physical sciences010306 general physics0210 nano-technologyAnisotropy[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets

2020

The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these concepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Young's moduli of 62.1 GPa and 43.4 GPa, with the highest sust…

Letter2D magnetic materialsnanoindentationchemistry.chemical_elementFOS: Physical sciencesBioengineeringYoung's modulus02 engineering and technologyApplied Physics (physics.app-ph)mechanical propertiesPlasticityChromiumsymbols.namesakeGeneral Materials ScienceYoung’s modulusstrain tunabilityCondensed Matter - Materials ScienceCondensed matter physicsMechanical EngineeringTrihalideMaterials Science (cond-mat.mtrl-sci)MagnetostrictionPhysics - Applied PhysicsGeneral ChemistryNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physicscond-mat.mtrl-sci3. Good healthchemistryplasticityMagnetsymbolsvan der Waals forcephysics.app-ph0210 nano-technology
researchProduct