Search results for "manifold"

showing 10 items of 415 documents

Volume estimate for a cone with a submanifold as vertex

1992

We give some estimates for the volume of a cone with vertex a submanifold P of a Riemannian or Kaehler manifold M. The estimates are functions of bounds of the mean curvature of P and the sectional curvature of M. They are sharp on cones having a basis which is contained in a tubular hypersurface about P in a space form or in a complex space form.

Mean curvature flowPure mathematicsMean curvatureMathematics::Complex VariablesMathematical analysisSubmanifoldHypersurfaceVertex (curve)Mathematics::Differential GeometryGeometry and TopologySectional curvatureMathematics::Symplectic GeometryRicci curvatureMathematicsScalar curvatureJournal of Geometry
researchProduct

Pappus type theorems for motions along a submanifold

2004

Abstract We study the volumes volume( D ) of a domain D and volume( C ) of a hypersurface  C obtained by a motion along a submanifold P of a space form  M n λ . We show: (a) volume( D ) depends only on the second fundamental form of  P , whereas volume( C ) depends on all the i th fundamental forms of  P , (b) when the domain that we move D 0 has its q -centre of mass on  P , volume( D ) does not depend on the mean curvature of  P , (c) when D 0 is q -symmetric, volume( D ) depends only on the intrinsic curvature tensor of  P ; and (d) if the image of  P by the ln of the motion (in a sense which is well-defined) is not contained in a hyperplane of the Lie algebra of SO ( n − q − d ), and C …

Mean curvatureGeodesicVolumeSpace formParallel motionImage (category theory)Second fundamental formMathematical analysisSubmanifoldMotion along a submanifoldCombinatoricsHypersurfaceComputational Theory and MathematicsTubePappus formulaeLie algebraDomain (ring theory)Comparison theoremMathematics::Differential GeometryGeometry and TopologyAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

Hilbert modularity of some double octic Calabi--Yau threefolds

2018

We exhibit three double octic Calabi--Yau threefolds over the certain quadratic fields and prove their modularity. The non-rigid threefold has two conjugate Hilbert modular forms of weight [4,2] and [2,4] attached while the two rigid threefolds correspond to a Hilbert modular form of weight [4,4] and to the twist of the restriction of a classical modular form of weight 4.

Modularity (networks)Pure mathematicsAlgebra and Number TheoryMathematics - Number Theory010102 general mathematicsModular formField (mathematics)010103 numerical & computational mathematics01 natural sciencesMathematics - Algebraic GeometryQuadratic equationMathematics::Algebraic GeometryFOS: MathematicsCalabi–Yau manifoldNumber Theory (math.NT)0101 mathematicsTwistHilbert modular formAlgebraic Geometry (math.AG)Mathematics
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry

2022

AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…

Multiplicity resultsGround state010102 general mathematicsMultiplicity (mathematics)Scalar curvature equation01 natural sciencesPhase plane analysiGround statesBubble tower solutions010101 applied mathematicsCombinatoricsSettore MAT/05 - Analisi MatematicaBubble tower solutionFowler transformationScalar curvature equation; Ground states; Fowler transformation; Invariant manifold; Bubble tower solutions; Phase plane analysis; Multiplicity resultsMultiplicity result0101 mathematicsNon-perturbativeInvariant manifoldGround stateAnalysisReciprocalPhase plane analysisScalar curvatureMathematicsJournal of Dynamics and Differential Equations
researchProduct

Localization of hidden Chua's attractors

2011

Abstract The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria . In the present Letter for localization of hidden attractors of Chuaʼs circuit it is suggested to use a special analytical–numerical algorithm.

Nonlinear Sciences::Chaotic DynamicsPhysicsta113Mathematics::Dynamical SystemsNumerical analysisAttractorTrajectoryGeneral Physics and AstronomyPoint (geometry)Statistical physicsType (model theory)Hidden oscillationManifoldPhysics Letters A
researchProduct

Hydraulic assessment of an upgraded pipework arrangement for the DEMO divertor plasma facing components cooling circuit

2021

Abstract In the context of the Work Package DIVertor (WPDIV) of the EUROfusion action, a research campaign has been carried out by University of Palermo in cooperation with ENEA to assess the thermal-hydraulic performances of the DEMO divertor cooling system, concentrating the attention on its 2019 Plasma Facing Components (PFCs) configuration, relevant to DEMO baseline 2017. The research activity has been performed following a theoretical-numerical technique based on the finite volume method and adopting the well-known ANSYS CFX CFD code. The PFCs cooling circuit thermal-hydraulic performances under nominal steady-state conditions, assessed mainly in terms of coolant total pressure drop, c…

Nuclear engineeringContext (language use)01 natural sciences010305 fluids & plasmaslaw.inventionDivertorlaw0103 physical sciencesWater coolingGeneral Materials ScienceTotal pressure010306 general physicsDEMOPlasma facing componentsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermofluid-dynamicsCritical heat fluxMechanical EngineeringDivertorCoolantAxial compressorNuclear Energy and EngineeringEnvironmental scienceInlet manifoldCFD analysis
researchProduct

Inversion Formulas for the Discretized Hilbert Transform on the Unit Circle

1998

A discrete version of the Hilbert transform on the unit circle is considered. Its Moore--Penrose inverse with respect to suitable scalar products is derived for different side conditions. Furthermore, stability of the pseudo-inverse is studied. These results allow the efficient computation of approximate solutions of singular integral equations with Hilbert kernel. Furthermore, the stability analysis of such methods becomes much easier even for graded meshes which are useful for weakly singular solutions.

Numerical AnalysisHilbert manifoldDiscretizationHilbert R-treeApplied MathematicsMathematical analysisSingular integralHilbert–Huang transformComputational Mathematicssymbols.namesakeUnit circlesymbolsHilbert transformMoore–Penrose pseudoinverseMathematicsSIAM Journal on Numerical Analysis
researchProduct

An elliptic equation on n-dimensional manifolds

2020

We consider an elliptic equation driven by a p-Laplacian-like operator, on an n-dimensional Riemannian manifold. The growth condition on the right-hand side of the equation depends on the geometry of the manifold. We produce a nontrivial solution by using a Palais–Smale compactness condition and a mountain pass geometry.

Numerical AnalysisPure mathematicsN dimensionalApplied MathematicsOperator (physics)p-Laplacian-like operator010102 general mathematicsIsocapacitary inequalityRiemannian manifoldSobolev space01 natural sciences010101 applied mathematicsSobolev spaceComputational MathematicsElliptic curvemountain pass geometrySettore MAT/05 - Analisi MatematicaMathematics::Differential Geometry0101 mathematicsOrlicz spaceAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

Nonlinear concave-convex problems with indefinite weight

2021

We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.

Numerical AnalysisPure mathematicslocal minimizerspositive solutionsNehari manifoldApplied MathematicsRegular polygonLagrange multiplierComputational MathematicsNonlinear systemSettore MAT/05 - Analisi Matematicanonlinear regularityAnalysisMathematics
researchProduct