Search results for "manifold"
showing 10 items of 415 documents
Volume estimate for a cone with a submanifold as vertex
1992
We give some estimates for the volume of a cone with vertex a submanifold P of a Riemannian or Kaehler manifold M. The estimates are functions of bounds of the mean curvature of P and the sectional curvature of M. They are sharp on cones having a basis which is contained in a tubular hypersurface about P in a space form or in a complex space form.
Pappus type theorems for motions along a submanifold
2004
Abstract We study the volumes volume( D ) of a domain D and volume( C ) of a hypersurface C obtained by a motion along a submanifold P of a space form M n λ . We show: (a) volume( D ) depends only on the second fundamental form of P , whereas volume( C ) depends on all the i th fundamental forms of P , (b) when the domain that we move D 0 has its q -centre of mass on P , volume( D ) does not depend on the mean curvature of P , (c) when D 0 is q -symmetric, volume( D ) depends only on the intrinsic curvature tensor of P ; and (d) if the image of P by the ln of the motion (in a sense which is well-defined) is not contained in a hyperplane of the Lie algebra of SO ( n − q − d ), and C …
Hilbert modularity of some double octic Calabi--Yau threefolds
2018
We exhibit three double octic Calabi--Yau threefolds over the certain quadratic fields and prove their modularity. The non-rigid threefold has two conjugate Hilbert modular forms of weight [4,2] and [2,4] attached while the two rigid threefolds correspond to a Hilbert modular form of weight [4,4] and to the twist of the restriction of a classical modular form of weight 4.
Multiplicity of ground states for the scalar curvature equation
2019
We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…
Multiplicity of Radial Ground States for the Scalar Curvature Equation Without Reciprocal Symmetry
2022
AbstractWe study existence and multiplicity of positive ground states for the scalar curvature equation $$\begin{aligned} \varDelta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n\,, \quad n>2, \end{aligned}$$ Δ u + K ( | x | ) u n + 2 n - 2 = 0 , x ∈ R n , n > 2 , when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ K : R + → R + is bounded above and below by two positive constants, i.e. $$0<\underline{K} \le K(r) \le \overline{K}$$ 0 < K ̲ ≤ K ( r ) ≤ K ¯ for every $$r > 0$$ r > 0 , it is decreasing in $$(0,{{{\mathcal {R}}}})$$ ( 0 , R ) and increasing in $$({{{\mathcal {R}}}},+\infty )$$ ( R , + ∞ ) for a certain $${{{\mathcal {R}}}}&g…
Localization of hidden Chua's attractors
2011
Abstract The classical attractors of Lorenz, Rossler, Chua, Chen, and other widely-known attractors are those excited from unstable equilibria. From computational point of view this allows one to use numerical method, in which after transient process a trajectory, started from a point of unstable manifold in the neighborhood of equilibrium, reaches an attractor and identifies it. However there are attractors of another type: hidden attractors, a basin of attraction of which does not contain neighborhoods of equilibria . In the present Letter for localization of hidden attractors of Chuaʼs circuit it is suggested to use a special analytical–numerical algorithm.
Hydraulic assessment of an upgraded pipework arrangement for the DEMO divertor plasma facing components cooling circuit
2021
Abstract In the context of the Work Package DIVertor (WPDIV) of the EUROfusion action, a research campaign has been carried out by University of Palermo in cooperation with ENEA to assess the thermal-hydraulic performances of the DEMO divertor cooling system, concentrating the attention on its 2019 Plasma Facing Components (PFCs) configuration, relevant to DEMO baseline 2017. The research activity has been performed following a theoretical-numerical technique based on the finite volume method and adopting the well-known ANSYS CFX CFD code. The PFCs cooling circuit thermal-hydraulic performances under nominal steady-state conditions, assessed mainly in terms of coolant total pressure drop, c…
Inversion Formulas for the Discretized Hilbert Transform on the Unit Circle
1998
A discrete version of the Hilbert transform on the unit circle is considered. Its Moore--Penrose inverse with respect to suitable scalar products is derived for different side conditions. Furthermore, stability of the pseudo-inverse is studied. These results allow the efficient computation of approximate solutions of singular integral equations with Hilbert kernel. Furthermore, the stability analysis of such methods becomes much easier even for graded meshes which are useful for weakly singular solutions.
An elliptic equation on n-dimensional manifolds
2020
We consider an elliptic equation driven by a p-Laplacian-like operator, on an n-dimensional Riemannian manifold. The growth condition on the right-hand side of the equation depends on the geometry of the manifold. We produce a nontrivial solution by using a Palais–Smale compactness condition and a mountain pass geometry.
Nonlinear concave-convex problems with indefinite weight
2021
We consider a parametric nonlinear Robin problem driven by the p-Laplacian and with a reaction having the competing effects of two terms. One is a parametric (Formula presented.) -sublinear term (concave nonlinearity) and the other is a (Formula presented.) -superlinear term (convex nonlinearity). We assume that the weight of the concave term is indefinite (that is, sign-changing). Using the Nehari method, we show that for all small values of the parameter (Formula presented.), the problem has at least two positive solutions and also we provide information about their regularity.