Search results for "manifold"
showing 10 items of 415 documents
Minimal unit vector fields
2002
We compute the first variation of the functional that assigns each unit vector field the volume of its image in the unit tangent bundle. It is shown that critical points are exactly those vector fields that determine a minimal immersion. We also find a necessary and sufficient condition that a vector field, defined in an open manifold, must fulfill to be minimal, and obtain a simpler equivalent condition when the vector field is Killing. The condition is fulfilled, in particular, by the characteristic vector field of a Sasakian manifold and by Hopf vector fields on spheres.
Analysis of a slow–fast system near a cusp singularity
2016
This paper studies a slow fast system whose principal characteristic is that the slow manifold is given by the critical set of the cusp catastrophe. Our analysis consists of two main parts: first, we recall a formal normal form suitable for systems as the one studied here; afterwards, taking advantage of this normal form, we investigate the transition near the cusp singularity by means of the blow up technique. Our contribution relies heavily in the usage of normal form theory, allowing us to refine previous results. (C) 2015 Elsevier Inc. All rights reserved.
Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3
1987
AbstractA cusp type germ of vector fields is a C∞ germ at 0∈ℝ2, whose 2-jet is C∞ conjugate toWe define a submanifold of codimension 5 in the space of germs consisting of germs of cusp type whose 4-jet is C0 equivalent toOur main result can be stated as follows: any local 3-parameter family in (0, 0) ∈ ℝ2 × ℝ3 cutting transversally in (0, 0) is fibre-C0 equivalent to
Volumes of certain small geodesic balls and almost-Hermitian geometry
1984
Let D be the characteristic connection of an almost-Hermitian manifold, V D m (r) the volume of a small geodesic ball for the connection D and C C D 1 the first non-trivial term of the Taylor expansion of V D m (r). NK-manifolds are characterized in terms of C C D 1 and a family of Hermitian manifolds for which ∫ M C C D 1 dvol is a spectral invariant is given and one proves that C C D 1 and the spectrum of the complex Laplacian, together, determine the class in which a compact Hermitian manifold lines.
A topological obstruction to the geodesibility of a foliation of odd dimension
1981
Let M be a compact Riemannian manifold of dimension n, and let ℱ be a smooth foliation on M. A topological obstruction is obtained, similar to results of R. Bott and J. Pasternack, to the existence of a metric on M for which ℱ is totally geodesic. In this case, necessarily that portion of the Pontryagin algebra of the subbundle ℱ must vanish in degree n if ℱ is odd-dimensional. Using the same methods simple proofs of the theorems of Bott and Pasternack are given.
A note on the Banach space of preregular maps
2011
The aim of this paper is to give simple proofs for Jeurnink's characterizations of preregular maps in terms of Θ-maps acting between Banach lattices. For Banach lattices E and F, we achieve our goal by considering the space Lβ(E, F) of all those linear maps T: E → F for which there exists a constant K such that {double pipe}Vn i=1 {pipe}Txi{pipe} ≤ K {double pipe}Vn i=1{pipe}xi for all finite sequences x1, ..., xn e{open}E. We show that, if Lβ(E; F), and the spaces L Θ (E; F) of Θ -map and Lpr(E; F) of preregular maps are respectively endowed with their canonical norms, then they are identical Banach spaces
Topological direct sum decompositions of banach spaces
1990
LetY andZ be two closed subspaces of a Banach spaceX such thatY≠lcub;0rcub; andY+Z=X. Then, ifZ is weakly countably determined, there exists a continuous projectionT inX such that ∥T∥=1,T(X)⊃Y, T −1(0)⊂Z and densT(X)=densY. It follows that every Banach spaceX is the topological direct sum of two subspacesX 1 andX 2 such thatX 1 is reflexive and densX 2**=densX**/X.
L 2-topological invariants of 3-manifolds
1995
We give results on theL2-Betti numbers and Novikov-Shubin invariants of compact manifolds, especially 3-manifolds. We first study the Betti numbers and Novikov-Shubin invariants of a chain complex of Hilbert modules over a finite von Neumann algebra. We establish inequalities among the Novikov-Shubin invariants of the terms in a short exact sequence of chain complexes. Our algebraic results, along with some analytic results on geometric 3-manifolds, are used to compute theL2-Betti numbers of compact 3-manifolds which satisfy a weak form of the geometrization conjecture, and to compute or estimate their Novikov-Shubin invariants.
Banach spaces which are somewhat uniformly noncreasy
2003
AbstractWe consider a family of spaces wider than r-UNC spaces and we give some fixed point results in the setting of these spaces.
On the construction of Ljusternik-Schnirelmann critical values in banach spaces
1991
w h e r e f a n d g are functionals on a Banach space X, are considered in many papers. The existence theorems are based on the existence of a critical vector with respect to the manifold M,={xEX: f(x)=r}. Morse theory can often be used to obtain precise information about the behaviour of the functional close to the critical level. However, this would limit the study to Hilbert spaces and functions with nondegenerate critical points. These assumptions are not always satisfied in applications and are not rleeded when applying the Ljusternik--Schnirelmann theory. Therefore, Ljusternik--Schnirelmann theory has been widely used to study various nonlinear eigenvalue problems. Very general result…