Search results for "masonry"

showing 10 items of 164 documents

Debonding Phenomena in CFRP Strengthened Calcarenite Masonry Walls and Vaults

2009

In this paper the results of an experimental investigation on full-scale reinforced masonry elements like vaults and walls are presented. The masonry type is constituted by calcarenite ashlars and bed joint mortar and the reinforcement is constituted by Carbon Fibre Reinforced Polymer (CFRP) strips. Preliminary experimental results obtained in a previous research by the authors on the local behaviour at the interface CFRP-calcarenite are summarized. Tests with controlled displacement are carried out on out-of-plane loaded walls and cylindrical vaults loaded at a quarter of the span. Results of tests carried out before and after the application of the reinforcement made it possible to evalu…

Materials sciencebusiness.industry0211 other engineering and technologiesMasonry veneer020101 civil engineering02 engineering and technologyBuilding and ConstructionStructural engineeringMasonrymasonry CFRP reinforcement reinforcing technique experimental investigation interface behaviour wall vaultCompression (physics)0201 civil engineeringCalcareniteSettore ICAR/09 - Tecnica Delle CostruzioniVault (architecture)021105 building & constructionMortarbusinessReinforcementJoint (geology)Civil and Structural EngineeringAdvances in Structural Engineering
researchProduct

Compressive behaviour of eccentrically loaded slender masonry columns confined by FRP

2018

Abstract Fibre Reinforced Polymer (FRP) confinement represents an effective tool for retrofitting masonry piers or columns enhancing their structural performance. This technique has been widely studied in the literature mainly with reference to short columns, while no extensive information is available on the influence of second order effects on its efficacy in case of slender members. Within this framework, the presented study concerns a simplified method able to assess the effects of FRP confinement on the compressive behaviour of slender masonry columns. A proper constitutive law of FRP confined masonry in compression is adopted for performing a sectional analysis, in which also consider…

Materials sciencebusiness.industryConstitutive equation0211 other engineering and technologies020101 civil engineering02 engineering and technologyStructural engineeringFibre-reinforced plasticMasonryCompression (physics)CurvatureFinite element method0201 civil engineeringSettore ICAR/09 - Tecnica Delle CostruzioniConfinement; Eccentric load; FRP; Masonry; Stability; Civil and Structural EngineeringColumn (typography)Eccentric load021105 building & constructionRetrofittingbusinessMasonryStabilityConfinementFRPCivil and Structural Engineering
researchProduct

Use of FRP fabrics and stainless steel grids for strengthening brick masonry columns

2016

This work presents the results of an experimental investigation on 42 solid clay brick columns internally strengthened by FRP fabrics or stainless steel grids placed in the horizontal joints of mortar. Monotonic compressive loading tests were carried out under concentric and eccentric load. Eccentric tests were carried out loading the specimens on a reduced area with respect to the entire crosssection producing a D-region. The reinforcing of every course and of alternate courses are studied. The effectiveness of the proposed strengthening techniques is discussed, in terms of increase in strength and energy required to the collapse of brick columns. An analytical expression is proposed that …

Materials sciencebusiness.industryMasonry materialBrick masonryD regionStrengthening (metal)Structural engineeringD regionFibre-reinforced plasticMasonrybusinessReinforcementStainless steel
researchProduct

The interphase finite element

2011

Mesomodelling of structures made of heterogeneous materials requires the introduction of mechanical models which are able to simulate the interactions between the adherents. Among these devices is quite popular the zero thickness interface (ZTI) model where the contact tractions and the displacement discontinuities are the primary static and kinematic variables. In some cases the joint response depends also on the internal stresses and strains within the thin layer adjacent to the joint interfaces. The interphase model, taking into account these additional variables, represents a sort of enhanced ZTI. In this paper a general theoretical formulation of the interphase model is reported and an…

Materials sciencebusiness.industryMechanical modelsApplied MathematicsMechanical EngineeringComputational MechanicsOcean EngineeringStructural engineeringKinematicsMixed finite element methodMechanicsMasonryClassification of discontinuitiesFinite element methodComputational MathematicsComputational Theory and MathematicsShear (geology)Heterogeneous materials Mesomodelling Interphase Finite elementInterphaseSettore ICAR/08 - Scienza Delle CostruzionibusinessComputational Mechanics
researchProduct

A Cap-Model for Masonry-Like Material Constitutive Laws

1995

An accurate description of the constitutive behaviour of masonry-like materials is an essential target for obtaining an effective analysis-tool of masonry structures. In this paper an idealized constitutive model of such materials is proposed taking into account some peculiar features of masonry: -i) a limited strength in compression; -ii) a very limited ability to withstand tensile stresses; -iii) a softening behaviour due to a progressive reduction of the tensile strength during a monotonically increasing loading.

Materials sciencebusiness.industryUltimate tensile strengthConstitutive equationComposite materialMasonrybusinessReduction (mathematics)Compression (physics)Softening
researchProduct

Numerical Modeling Approaches of FRCMs/SRG Confined Masonry Columns

2019

The Fabric Reinforced Cementitious Matrices (FRCMs) and Steel Reinforced Grout (SRG) are a promising strengthening solution for existing masonry since inorganic matrix is considerably compatible with historical substrates. The present paper is focused on a Finite Element (FE) analysis of masonry columns confined with FRCM composites developed by Abaqus-code. The masonry columns were modelled using a macro model approach. The model was performed by using the following functions Concrete Damage Plasticity (CDP) and the Plastic (P) in order to describe the constitutive laws of material for masonry columns and external reinforcement, respectively. Typical failures of FRCM-systems are slippage o…

Materials sciencemasonry columnsGeography Planning and Development0211 other engineering and technologiesfabric/matrix bond020101 civil engineering02 engineering and technologyengineering.material0201 civil engineeringFRCM systemslcsh:HT165.5-169.9Matrix (mathematics)Overlap zone021110 strategic defence & security studiesbusiness.industryGroutBuilding and ConstructionStructural engineeringMasonrylcsh:City planningFinite element methodUrban Studiesnumerical modelinglcsh:TA1-2040confinementengineeringCementitiousSlippagebusinesslcsh:Engineering (General). Civil engineering (General)Failure mode and effects analysisFrontiers in Built Environment
researchProduct

ON THE UNIT CELL BOUNDARY VALUE PROBLEM WITH MESHLESS FORMULATION FOR MASONRY STRUCTURES

2017

In a generic multi-scale computational homogenization (CH) procedure, the crucial point is the definition and the solution of the Unit Cell (UC) Boundary Value Problem (BVP). The main aspects to be chosen for the formulation of the UC BVP are: (i) geometry; (ii) bound- ary conditions (BCs); (iii) material models; (iv) numerical approximation techniques. All these components play a key-role in the efficiency of the multi-scale procedure. In the present study, the UC BVP is formulated for running bond masonry according to a dis- placement based variational formulation, where the material of the blocks is considered indefi- nitely elastic and the mortar joints are simulated by zero-thickness e…

Meshless Methods Masonry Boundary Value ProblemSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

A FE-Meshless Multiscale Approach for Masonry Materials

2015

Abstract A FE-Meshless multiscale computational strategy for the analysis of running bond masonry is presented. The Meshless Method (MM) is adopted to solve the boundary value problem (BVP) at the mesoscopic level. The representative unit cell is composed by the aggregate and the surrounding joints, the former assumed to behave elastically while the latter are simulated as non-associated elastic-plastic zero-thickness interfaces with a softening response. Macroscopic localization of plastic bands is obtained performing a spectral analysis of the tangent stiffness matrix. Localized plastic bands are embedded into the quadrature points area of the macroscopic finite elements.

Mesoscopic physicsComputational Homogenization; Interfaces; Localization; Masonry; Meshless; Engineering (all)Aggregate (composite)Materials sciencebusiness.industryMeshlessInterfaces.Mathematical analysisGeneral MedicineStructural engineeringMasonryInterfaceComputational HomogenizationFinite element methodMeshleQuadrature (mathematics)Engineering (all)LocalizationTangent stiffness matrixBoundary value problembusinessSettore ICAR/08 - Scienza Delle CostruzioniMasonrySofteningEngineering(all)Procedia Engineering
researchProduct

Attendibilità dei modelli per la valutazione dei moduli elastici delle murature suggeriti dalle norme tecniche

2012

In this paper the results of an experimental investigation aimed to the assessment of Young moduli, rigidity moduli and other mechanical properties for different types of masonry are shown. The mechanical characteristics predicted by models proposed by some technical codes were compared against experimental data. This study was motivated by the suggestion of the Masonry Standards Joint Committee's (MSJC) code that, while proposing the use of such models, acknowledges the lack of testing in support of their validation. The experimental investigation has included compressive tests on components (blocks and mortar), diagonal compressive tests and ordinary compressive tests (orthogonally to bed…

Modulus of elasticityTechnical codeBuilding and ConstructionDiagonal compressive testGeotechnical Engineering and Engineering GeologyTechnical codesOrdinary compressive testSettore ICAR/09 - Tecnica Delle CostruzioniOrdinary compressive testsModulus of rigidityDiagonal compressive tests; Masonry; Modulus of elasticity; Modulus of rigidity; Ordinary compressive tests; Technical codes;Safety Risk Reliability and QualityMasonryDiagonal compressive tests
researchProduct

Multi-scale computational homogenization with applications to masonry structures

Multi-scale meshless masonry
researchProduct