Search results for "math-ph"
showing 10 items of 525 documents
Pseudo-bosons for the $D_2$ type quantum Calogero model
2013
In the first part of this paper we show how a simple system, a 2-dimensional quantum harmonic oscillator, can be described in terms of pseudo-bosonic variables. This apparently {\em strange} choice is useful when the {\em natural} Hilbert space of the system, $L^2({\bf R}^2)$ in this case, is, for some reason, not the most appropriate. This is exactly what happens for the $D_2$ type quantum Calogero model considered in the second part of the paper, where the Hilbert space $L^2({\bf R}^2)$ appears to be an unappropriate choice, since the eigenvectors of the relevant hamiltonian are not square-integrable. Then we discuss how a certain intertwining operator arising from the model can be used t…
Finite propagation speed for solutions of the wave equation on metric graphs
2012
We provide a class of self-adjoint Laplace operators on metric graphs with the property that the solutions of the associated wave equation satisfy the finite propagation speed property. The proof uses energy methods, which are adaptions of corresponding methods for smooth manifolds.
Singular factorizations, self-adjoint extensions, and applications to quantum many-body physics
2006
We study self-adjoint operators defined by factorizing second order differential operators in first order ones. We discuss examples where such factorizations introduce singular interactions into simple quantum mechanical models like the harmonic oscillator or the free particle on the circle. The generalization of these examples to the many-body case yields quantum models of distinguishable and interacting particles in one dimensions which can be solved explicitly and by simple means. Our considerations lead us to a simple method to construct exactly solvable quantum many-body systems of Calogero-Sutherland type.
Generalized Riesz systems and quasi bases in Hilbert space
2019
The purpose of this article is twofold. First of all, the notion of $(D, E)$-quasi basis is introduced for a pair $(D, E)$ of dense subspaces of Hilbert spaces. This consists of two biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ such that $\sum_{n=0}^\infty \ip{x}{\varphi_n}\ip{\psi_n}{y}=\ip{x}{y}$ for all $x \in D$ and $y \in E$. Secondly, it is shown that if biorthogonal sequences $\{ \varphi_n \}$ and $\{ \psi_n \}$ form a $(D ,E)$-quasi basis, then they are generalized Riesz systems. The latter play an interesting role for the construction of non-self-adjoint Hamiltonians and other physically relevant operators.
Qualitative remarks on some non-linear aspects of the radio-pulsar magnetosphere
2011
In the class of the submodels SCLF (space-charge limited flow) of the family of "gap-plus-PPF" models, let us exposes some qualitative remarks on the possible turbulent dynamics showed by the zone (II) (see Fig. 1 of the text) of the acceleration zone of the "direct inner gap". Furthermore, we will discuss some consequent physical implications (as, for instance, self-focussing phenomena, Petviashvili's diamagnetism, and so on) concerning structure and physical phenomenology of the remaining subzones (above the subzone (II)) of the given acceleration zone, in connection with possible models for the external solid crust of the radio-pulsar.
(q,h)-analogue of Newton's binomial formula
1998
In this letter, the (q,h)-analogue of Newton's binomial formula is obtained in the (q,h)-deformed quantum plane which reduces for h=0 to the q-analogue. For (q=1,h=0), this is just the usual one as it should be. Moreover, the h-analogue is recovered for q=1. Some properties of the (q,h)-binomial coefficients are also given. This result will contribute to an introduction of the (q,h)-analogue of the well-known functions, (q,h)-special functions and (q,h)-deformed analysis.
Relative velocities, geometry, and expansion of space
2012
What does it mean to say that space expands? One approach to this question is the study of relative velocities. In this context, a non local test particle is "superluminal" if its relative velocity exceeds the local speed of light of the observer. The existence of superluminal relative velocities of receding test particles, in a particular cosmological model, suggests itself as a possible criterion for expansion of space in that model. In this point of view, superluminal velocities of distant receding galaxy clusters result from the expansion of space between the observer and the clusters. However, there is a fundamental ambiguity that must be resolved before this approach can be meaningful…
The combinatorics of the SU(2) black hole entropy in loop quantum gravity
2009
We use the combinatorial and number-theoretical methods developed in previous work by the authors to study black hole entropy in the new proposal put forward by Engle, Noui and Perez. Specifically we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior including the value of the Immirzi parameter and the coefficient of the logarithmic correction.
Geometric inequivalence of metric and Palatini formulations of General Relativity
2020
Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K≡R R , can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the …
On critical behaviour in systems of Hamiltonian partial differential equations
2013
Abstract We study the critical behaviour of solutions to weakly dispersive Hamiltonian systems considered as perturbations of elliptic and hyperbolic systems of hydrodynamic type with two components. We argue that near the critical point of gradient catastrophe of the dispersionless system, the solutions to a suitable initial value problem for the perturbed equations are approximately described by particular solutions to the Painlevé-I (P $$_I$$ I ) equation or its fourth-order analogue P $$_I^2$$ I 2 . As concrete examples, we discuss nonlinear Schrödinger equations in the semiclassical limit. A numerical study of these cases provides strong evidence in support of the conjecture.