Search results for "math-ph"
showing 10 items of 525 documents
k-Leibniz algebras from lower order ones: from Lie triple to Lie l-ple systems
2013
Two types of higher order Lie l-ple systems are introduced in this paper. They are defined by brackets with l > 3 arguments satisfying certain conditions, and generalize the well-known Lie triple systems. One of the generalizations uses a construction that allows us to associate a (2n - 3)-Leibniz algebra pound with a metric n-Leibniz algebra () pound over tilde by using a 2(n - 1)-linear Kasymov trace form for () pound over tilde. Some specific types of k-Leibniz algebras, relevant in the construction, are introduced as well. Both higher order Lie l-ple generalizations reduce to the standard Lie triple systems for l = 3.
Digital calculus and finite groups in quantum mechanics
2015
By means of a digit function that has been introduced in a recent formulation of classical and quantum mechanics, we provide a new construction of some infinite families of finite groups, both abelian and nonabelian, of importance for theoretical, atomic and molecular physics. Our construction is not based on algebraic relationships satisfied by generators, but in establishing the appropriate law of composition that induces the group structure on a finite set of nonnegative integers (the cardinal of the set being equal to the order of the group) thus making computations with finite groups quite straightforward. We establish the abstract laws of composition for infinite families of finite gr…
The Schur Expansion of Characteristic Polynomials and Random Matrices
2021
We develop a new framework to compute the exact correlators of characteristic polynomials, and their inverses, in random matrix theory. Our results hold for general potentials and incorporate the effects of an external source. In matrix model realizations of string theory, these correspond to correlation functions of exponentiated "(anti-)branes" in a given background of "momentum branes". Our method relies on expanding the (inverse) determinants in terms of Schur polynomials, then re-summing their expectation values over the allowed representations of the symmetric group. Beyond unifying previous, seemingly disparate calculations, this powerful technique immediately delivers two new result…
Cohomology of Filippov algebras and an analogue of Whitehead's lemma
2009
We show that two cohomological properties of semisimple Lie algebras also hold for Filippov (n-Lie) algebras, namely, that semisimple n-Lie algebras do not admit non-trivial central extensions and that they are rigid i.e., cannot be deformed in Gerstenhaber sense. This result is the analogue of Whitehead's Lemma for Filippov algebras. A few comments about the n-Leibniz algebras case are made at the end.
Topics on n-ary algebras
2011
We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (or n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all $n\geq 2$ FAs, n=2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is led to the n-Leibniz (or…
Strong monogamy of bipartite and genuine multipartite entanglement: The Gaussian case
2007
We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.
Intersecting Defects and Supergroup Gauge Theory
2021
Journal of physics / A 54(43), 435401 (2021). doi:10.1088/1751-8121/ac2716
Mapping the geometry of the F(4) group.
2007
In this paper we present a construction of the compact form of the exceptional Lie group F4 by exponentiating the corresponding Lie algebra f4. We realize F4 as the automorphisms group of the exceptional Jordan algebra, whose elements are 3 x 3 hermitian matrices with octonionic entries. We use a parametrization which generalizes the Euler angles for SU(2) and is based on the fibration of F4 via a Spin(9) subgroup as a fiber. This technique allows us to determine an explicit expression for the Haar invariant measure on the F4 group manifold. Apart from shedding light on the structure of F4 and its coset manifold OP2=F4/Spin(9), the octonionic projective plane, these results are a prerequisi…
Numerical evaluation of iterated integrals related to elliptic Feynman integrals
2021
We report on an implementation within GiNaC to evaluate iterated integrals related to elliptic Feynman integrals numerically to arbitrary precision within the region of convergence of the series expansion of the integrand. The implementation includes iterated integrals of modular forms as well as iterated integrals involving the Kronecker coefficient functions $g^{(k)}(z,\tau)$. For the Kronecker coefficient functions iterated integrals in $d\tau$ and $dz$ are implemented. This includes elliptic multiple polylogarithms.
Deformation Quantization: Genesis, Developments and Metamorphoses
2002
We start with a short exposition of developments in physics and mathematics that preceded, formed the basis for, or accompanied, the birth of deformation quantization in the seventies. We indicate how the latter is at least a viable alternative, autonomous and conceptually more satisfactory, to conventional quantum mechanics and mention related questions, including covariance and star representations of Lie groups. We sketch Fedosov's geometric presentation, based on ideas coming from index theorems, which provided a beautiful frame for developing existence and classification of star-products on symplectic manifolds. We present Kontsevich's formality, a major metamorphosis of deformation qu…