Search results for "math-ph"
showing 10 items of 525 documents
A class of weak pseudo-bosons and their bi-coherent states
2022
In this paper we extend some previous results on weak pseudo-bosons and on their related bi-coherent states. The role of {\em compatible} functions is discussed in details, and some examples are considered. The pseudo-bosonic ladder operators analysed in this paper generalize significantly those considered so far, and a class of new diagonalizable manifestly non self-adjoint Hamiltonians are deduced.
TANGENTIAL DEFORMATIONS ON FIBRED POISSON MANIFOLDS
2005
In a recent article, Cattaneo, Felder and Tomassini explained how the notion of formality can be used to construct flat Fedosov connections on formal vector bundles on a Poisson manifold $M$ and thus a star product on $M$ through the original Fedosov method for symplectic manifolds. In this paper, we suppose that $M$ is a fibre bundle manifold equipped with a Poisson tensor tangential to the fibers. We show that in this case the construction of Cattaneo-Felder- Tomassini gives tangential (to the fibers) star products.
Towards a local approach to fatigue, for the calculation of structures, applied to continuous fibre reinforced composite materials and structures
2018
The original concept of mechanical fatigue was linked to the failure of structures and was treated at first within the framework of Fracture Mechanics. Models developed to explain this phenomenon must therefore be able to be applied to structures: changing the structure means changes to the model and its identification. It is therefore judicious to develop models capable of treating both the damage processes and also able to be used within a local framework: to this end a method based on Damage Mechanics seems appropriate. This approach has long been employed and requires only the identification of damage processes at the level of the RVE (Representative Volume Element) to be used for any s…
Groups acting freely on Calabi-Yau threefolds embedded in a product of del Pezzo surfaces
2011
In this paper, we investigate quotients of Calabi-Yau manifolds $Y$ embedded in Fano varieties $X$, which are products of two del Pezzo surfaces — with respect to groups $G$ that act freely on $Y$. In particular, we revisit some known examples and we obtain some new Calabi-Yau varieties with small Hodge numbers. The groups $G$ are subgroups of the automorphism groups of $X$, which is described in terms of the automorphism group of the two del Pezzo surfaces.
A bending theory of thermoelastic diffusion plates based on Green-Naghdi theory
2017
Abstract This article is concerned with bending plate theory for thermoelastic diffusion materials under Green-Naghdi theory. First, we present the basic equations which characterize the bending of thin thermoelastic diffusion plates for type II and III models. The theory allows for the effect of transverse shear deformation without any shear correction factor, and permits the propagation of waves at a finite speed without energy dissipation for type II model and with energy dissipation for type III model. By the semigroup theory of linear operators, we prove the well-posedness of the both models and the asymptotic behavior of the solutions of type III model. For unbounded plate of type III…
Monogamy Inequality for Distributed Gaussian Entanglement
2007
We show that for all n-mode Gaussian states of continuous variable systems, the entanglement shared among n parties exhibits the fundamental monogamy property. The monogamy inequality is proven by introducing the Gaussian tangle, an entanglement monotone under Gaussian local operations and classical communication, which is defined in terms of the squared negativity in complete analogy with the case of n-qubit systems. Our results elucidate the structure of quantum correlations in many-body harmonic lattice systems.
A note on the uniqueness result for the inverse Henderson problem
2019
The inverse Henderson problem of statistical mechanics is the theoretical foundation for many bottom-up coarse-graining techniques for the numerical simulation of complex soft matter physics. This inverse problem concerns classical particles in continuous space which interact according to a pair potential depending on the distance of the particles. Roughly stated, it asks for the interaction potential given the equilibrium pair correlation function of the system. In 1974, Henderson proved that this potential is uniquely determined in a canonical ensemble and he claimed the same result for the thermodynamical limit of the physical system. Here, we provide a rigorous proof of a slightly more …
Exact treatment of linear difference equations with noncommutative coefficients
2007
The exact solution of a Cauchy problem related to a linear second-order difference equation with constant noncommutative coefficients is reported.
Topological Decompositions of the Pauli Group and their Influence on Dynamical Systems
2021
In the present paper we show that it is possible to obtain the well known Pauli group $P=\langle X,Y,Z \ | \ X^2=Y^2=Z^2=1, (YZ)^4=(ZX)^4=(XY)^4=1 \rangle $ of order $16$ as an appropriate quotient group of two distinct spaces of orbits of the three dimensional sphere $S^3$. The first of these spaces of orbits is realized via an action of the quaternion group $Q_8$ on $S^3$; the second one via an action of the cyclic group of order four $\mathbb{Z}(4)$ on $S^3$. We deduce a result of decomposition of $P$ of topological nature and then we find, in connection with the theory of pseudo-fermions, a possible physical interpretation of this decomposition.
On the use of fractional calculus for the probabilistic characterization of random variables
2009
In this paper, the classical problem of the probabilistic characterization of a random variable is re-examined. A random variable is usually described by the probability density function (PDF) or by its Fourier transform, namely the characteristic function (CF). The CF can be further expressed by a Taylor series involving the moments of the random variable. However, in some circumstances, the moments do not exist and the Taylor expansion of the CF is useless. This happens for example in the case of $\alpha$--stable random variables. Here, the problem of representing the CF or the PDF of random variables (r.vs) is examined by introducing fractional calculus. Two very remarkable results are o…