Search results for "math-ph"
showing 10 items of 525 documents
Geometry of Degeneracy in Potential and Density Space
2022
In a previous work [J. Chem. Phys. 155, 244111 (2021)], we found counterexamples to the fundamental Hohenberg-Kohn theorem from density-functional theory in finite-lattice systems represented by graphs. Here, we demonstrate that this only occurs at very peculiar and rare densities, those where density sets arising from degenerate ground states, called degeneracy regions, touch each other or the boundary of the whole density domain. Degeneracy regions are shown to generally be in the shape of the convex hull of an algebraic variety, even in the continuum setting. The geometry arising between density regions and the potentials that create them is analyzed and explained with examples that, amo…
Density-Functional Theory on Graphs
2021
The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the fundamental Hohenberg–Kohn theorem is found void, in general, while many insights into the topological structure of the density-potential mapping can be won. We give precise conditions for a ground state to be uniquely v-representable and are able to prove that this property holds for almost all densities. A set of examples illustrates the theory and demonstrates the non-convexity of the pure-state constrained-search functional. peerReviewed
Levy flights in confining environments: Random paths and their statistics
2013
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise. In view of the L\'{e}vy noise sensitivity to the confining "potential landscape" where jumps take place (in other words, to environmental inhomogeneities), the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Since there is no Langevin representation of the dynamics in question, our main goal here is to establish the appropriate path-wise description of the underlying jump-type process and next infer the $\rho (x,t)$ dynamics directly from the random paths statistics. A pr…
The strictly-correlated electron functional for spherically symmetric systems revisited
2017
The strong-interaction limit of the Hohenberg-Kohn functional defines a multimarginal optimal transport problem with Coulomb cost. From physical arguments, the solution of this limit is expected to yield strictly-correlated particle positions, related to each other by co-motion functions (or optimal maps), but the existence of such a deterministic solution in the general three-dimensional case is still an open question. A conjecture for the co-motion functions for radially symmetric densities was presented in Phys.~Rev.~A {\bf 75}, 042511 (2007), and later used to build approximate exchange-correlation functionals for electrons confined in low-density quantum dots. Colombo and Stra [Math.~M…
Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces
2018
In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in "Strong-interaction limit of density-functional theory" by M. Seidl.
Integrability of the one dimensional Schrödinger equation
2018
We present a definition of integrability for the one dimensional Schroedinger equation, which encompasses all known integrable systems, i.e. systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Morphisms of certain banach C*-modules
2000
Morphisms and representations of a class of Banach C*-modules, called CQ*algebras, are considered. Together with a general method for constructing CQ*-algebras, two different ways of extending the GNS-representation are presented.
Multiplications of Distributions in One Dimension and a First Application to Quantum Field Theory
2002
In a previous paper we introduced a class of multiplications of distributions in one dimension. Here we furnish different generalizations of the original definition and we discuss some applications of these procedures to the multiplication of delta functions and to quantum field theory. © 2002 Elsevier Science (USA).
Signatures of physical constraints in rotating rigid bodies
2023
We study signatures of physical constraints on free rotations of rigid bodies. We show analytically that the physical or non-physical nature of the moments of inertia of a system can be detected by qualitative changes both in the Montgomery Phase and in the Tennis Racket Effect.
h analogue of Newton's binomial formula
1998
In this letter, the $h$--analogue of Newton's binomial formula is obtained in the $h$--deformed quantum plane which does not have any $q$--analogue. For $h=0$, this is just the usual one as it should be. Furthermore, the binomial coefficients reduce to $\frac{n!}{(n-k)!}$ for $h=1$. \\ Some properties of the $h$--binomial coefficients are also given. \\ Finally, I hope that such results will contribute to an introduction of the $h$--analogue of the well--known functions, $h$--special functions and $h$--deformed analysis.