6533b7d2fe1ef96bd125e301
RESEARCH PRODUCT
Levy flights in confining environments: Random paths and their statistics
Vladimir A. StephanovichPiotr GarbaczewskiMariusz ŻAbasubject
Chemical Physics (physics.chem-ph)Statistics and ProbabilityPhysicsStatistical Mechanics (cond-mat.stat-mech)LogarithmFOS: Physical sciencesProbability density functionContext (language use)Mathematical Physics (math-ph)Function (mathematics)Condensed Matter PhysicsStability (probability)Lévy flightPhysics - Chemical PhysicsPhysics - Data Analysis Statistics and ProbabilityStatisticsMaster equationInvariant (mathematics)Data Analysis Statistics and Probability (physics.data-an)Condensed Matter - Statistical MechanicsMathematical Physicsdescription
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise. In view of the L\'{e}vy noise sensitivity to the confining "potential landscape" where jumps take place (in other words, to environmental inhomogeneities), the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Since there is no Langevin representation of the dynamics in question, our main goal here is to establish the appropriate path-wise description of the underlying jump-type process and next infer the $\rho (x,t)$ dynamics directly from the random paths statistics. A priori given data are jump transition rates entering the master equation for $\rho (x,t)$ and its target pdf $\rho_*(x)$. We use numerical methods and construct a suitable modification of the Gillespie algorithm, originally invented in the chemical kinetics context. The generated sample trajectories show up a qualitative typicality, e.g. they display structural features of jumping paths (predominance of small vs large jumps) specific to particular stability indices $\mu \in (0,2)$.
year | journal | country | edition | language |
---|---|---|---|---|
2013-09-01 |