Levy flights in confining environments: Random paths and their statistics
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise. In view of the L\'{e}vy noise sensitivity to the confining "potential landscape" where jumps take place (in other words, to environmental inhomogeneities), the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Since there is no Langevin representation of the dynamics in question, our main goal here is to establish the appropriate path-wise description of the underlying jump-type process and next infer the $\rho (x,t)$ dynamics directly from the random paths statistics. A pr…
Ultrarelativistic bound states in the spherical well
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator $(-\Delta )^{1/2}$, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral datafor lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled $E_{(k,l)}$ series. For each orbital label $l=0,1,2,...$ the label $k =1,2,...$ enumerates consecutive $l$-th series eigenvalues. Each of them is $2l+1$-degenerate. …
Asymptotic entanglement of two atoms in a squeezed light field
The dynamics of entanglement between two - level atoms interacting with a common squeezed reservoir is investigated. It is shown that for spatially separated atoms there is a unique asymptotic state depending on the distance between the atoms and the atom - photons detuning. In the regime of strong correlations there is a one - parameter family of asymptotic steady - states depending on initial conditions. In contrast to the thermal reservoir both types of asymptotic states can be entangled. We calculate the amount of entanglement in the system in terms of concurrence.
Nonlocally-induced (quasirelativistic) bound states: Harmonic confinement and the finite well
Nonlocal Hamiltonian-type operators, like e.g. fractional and quasirelativistic, seem to be instrumental for a conceptual broadening of current quantum paradigms. However physically relevant properties of related quantum systems have not yet received due (and scientifically undisputable) coverage in the literature. In the present paper we address Schr\"{o}dinger-type eigenvalue problems for $H=T+V$, where a kinetic term $T=T_m$ is a quasirelativistic energy operator $T_m = \sqrt{-\hbar ^2c^2 \Delta + m^2c^4} - mc^2$ of mass $m\in (0,\infty)$ particle. A potential $V$ we assume to refer to the harmonic confinement or finite well of an arbitrary depth. We analyze spectral solutions of the per…
Lévy flights in an infinite potential well as a hypersingular Fredholm problem.
We study L\'evy flights {{with arbitrary index $0< \mu \leq 2$}} inside a potential well of infinite depth. Such problem appears in many physical systems ranging from stochastic interfaces to fracture dynamics and multifractality in disordered quantum systems. The major technical tool is a transformation of the eigenvalue problem for initial fractional Schr\"odinger equation into that for Fredholm integral equation with hypersingular kernel. The latter equation is then solved by means of expansion over the complete set of orthogonal functions in the domain $D$, reducing the problem to the spectrum of a matrix of infinite dimensions. The eigenvalues and eigenfunctions are then obtained numer…
Nonlocal random motions: The trapping problem
L\'evy stable (jump-type) processes are examples of intrinsically nonlocal random motions. This property becomes a serious obstacle if one attempts to model conditions under which a particular L\'evy process may be subject to physically implementable manipulations, whose ultimate goal is to confine the random motion in a spatially finite, possibly mesoscopic trap. We analyze thisissue for an exemplary case of the Cauchy process in a finiteinterval. Qualitatively, our observations extend to general jump-type processes that are driven by non-gaussian noises, classified by the integral part of the L\'evy-Khintchine formula.For clarity of arguments we discuss, as a reference model, the classic …
Nonlocally-induced (fractional) bound states: Shape analysis in the infinite Cauchy well
Fractional (L\'{e}vy-type) operators are known to be spatially nonlocal. This becomes an issue if confronted with a priori imposed exterior Dirichlet boundary data. We address spectral properties of the prototype example of the Cauchy operator $(-\Delta )^{1/2}$ in the interval $D=(-1,1) \subset R$, with a focus on functional shapes of lowest eigenfunctions and their fall-off at the boundaries of $D$. New high accuracy formulas are deduced for approximate eigenfunctions. We analyze how their shape reproduction fidelity is correlated with the evaluation finesse of the corresponding eigenvalues.
Solving fractional Schroedinger-type spectral problems: Cauchy oscillator and Cauchy well
This paper is a direct offspring of Ref. [J. Math. Phys. 54, 072103, (2013)] where basic tenets of the nonlocally induced random and quantum dynamics were analyzed. A number of mentions was maid with respect to various inconsistencies and faulty statements omnipresent in the literature devoted to so-called fractional quantum mechanics spectral problems. Presently, we give a decisive computer-assisted proof, for an exemplary finite and ultimately infinite Cauchy well problem, that spectral solutions proposed so far were plainly wrong. As a constructive input, we provide an explicit spectral solution of the finite Cauchy well. The infinite well emerges as a limiting case in a sequence of deep…
Ultrarelativistic (Cauchy) spectral problem in the infinite well
We analyze spectral properties of the ultrarelativistic (Cauchy) operator $|\Delta |^{1/2}$, provided its action is constrained exclusively to the interior of the interval $[-1,1] \subset R$. To this end both analytic and numerical methods are employed. New high-accuracy spectral data are obtained. A direct analytic proof is given that trigonometric functions $\cos(n\pi x/2)$ and $\sin(n\pi x)$, for integer $n$ are {\it not} the eigenfunctions of $|\Delta |_D^{1/2}$, $D=(-1,1)$. This clearly demonstrates that the traditional Fourier multiplier representation of $|\Delta |^{1/2}$ becomes defective, while passing from $R$ to a bounded spatial domain $D\subset R$.
Ultrarelativistic bound states in the shallow spherical well
We determine approximate eigenvalues and eigenfunctions shapes for bound states in the $3D$ shallow spherical ultrarelativistic well. Existence thresholds for the ground state and first excited states are identified, both in the purely radial and orbitally nontrivial cases. This contributes to an understanding of how energy may be stored or accumulated in the form of bound states of Schr\"odinger - type quantum systems that are devoid of any mass.
Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement
We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured by a two-sided reflection. Depending on the specific reflection "mechanism", the inferred jump-type processes differ in their spectral and statistical characteristics, like e.g. relaxation properties, and functional shapes of invariant (equilibrium, or asymptotic near-equilibrium) probability density functions in the interval. The analysis is carried out in conjunction with attempts to give meaning to the notion of a reflecting L\'{e}vy process…
Trajectory Statistics of Confined L\'evy Flights and Boltzmann-type Equilibria
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise, where Langevin representation is absent. In view of the L\'{e}vy noise sensitivity to environmental inhomogeneities, the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Here, we infer pdf $\rho (x,t)$ based on numerical path-wise simulation of the underlying jump-type process. A priori given data are jump transition rates entering the master equation for $\rho (x,t)$ and its target pdf $\rho_*(x)$. To simulate the above processes, we construct a suitable modification of t…
Path-wise versus kinetic modeling for equilibrating non-Langevin jump-type processes
We discuss two independent methods of solution of a master equation whose biased jump transition rates account for long jumps of L\'{e}vy-stable type and nonetheless admit a Boltzmannian (thermal) equilibrium to arise in the large time asymptotics of a probability density function $\rho (x,t)$. Our main goal is to demonstrate a compatibility of a {\it direct} solution method (an explicit, albeit numerically assisted, integration of the master equation) with an {\it indirect} path-wise procedure, recently proposed in [Physica {\bf A 392}, 3485, (2013)] as a valid tool for a dynamical analysis of non-Langevin jump-type processes. The path-wise method heavily relies on an accumulation of large…
Brownian motion in trapping enclosures: Steep potential wells, bistable wells and false bistability of induced Feynman-Kac (well) potentials
We investigate signatures of convergence for a sequence of diffusion processes on a line, in conservative force fields stemming from superharmonic potentials $U(x)\sim x^m$, $m=2n \geq 2$. This is paralleled by a transformation of each $m$-th diffusion generator $L = D\Delta + b(x)\nabla $, and likewise the related Fokker-Planck operator $L^*= D\Delta - \nabla [b(x)\, \cdot]$, into the affiliated Schr\"{o}dinger one $\hat{H}= - D\Delta + {\cal{V}}(x)$. Upon a proper adjustment of operator domains, the dynamics is set by semigroups $\exp(tL)$, $\exp(tL_*)$ and $\exp(-t\hat{H})$, with $t \geq 0$. The Feynman-Kac integral kernel of $\exp(-t\hat{H})$ is the major building block of the relaxatio…
Levy flights in steep potential wells: Langevin modeling versus direct response to energy landscapes
We investigate the non-Langevin relative of the L\'{e}vy-driven Langevin random system, under an assumption that both systems share a common (asymptotic, stationary, steady-state) target pdf. The relaxation to equilibrium in the fractional Langevin-Fokker-Planck scenario results from an impact of confining conservative force fields on the random motion. A non-Langevin alternative has a built-in direct response of jump intensities to energy (potential) landscapes in which the process takes place. We revisit the problem of L\'{e}vy flights in superharmonic potential wells, with a focus on the extremally steep well regime, and address the issue of its (spectral) "closeness" to the L\'{e}vy jum…