Search results for "math-ph"

showing 10 items of 525 documents

Coherent states: a contemporary panorama

2012

Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schr?dinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably…

Statistics and ProbabilityPhysicsPure mathematics010308 nuclear & particles physicsMathematics::History and Overview[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]General Physics and AstronomyStatistical and Nonlinear PhysicsQuantum entanglement01 natural sciencesPhysics::History of PhysicsGroup representationQuantization (physics)Theoretical physicsQuantum state[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Modeling and Simulation0103 physical sciencesCoherent statesQuantum gravityQuantum information010306 general physicsMathematical PhysicsComputingMilieux_MISCELLANEOUSQuantum computer
researchProduct

Non linear pseudo-bosons versus hidden Hermiticity

2011

The increasingly popular concept of a hidden Hermiticity of operators (i.e., of their Hermiticity with respect to an {\it ad hoc} inner product in Hilbert space) is compared with the recently introduced notion of {\em non-linear pseudo-bosons}. The formal equivalence between these two notions is deduced under very general assumptions. Examples of their applicability in quantum mechanics are discussed.

Statistics and ProbabilityPhysicsQuantum PhysicsGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Functional Analysis (math.FA)Mathematics - Functional AnalysisNonlinear systemTheoretical physicsModeling and Simulation46C15 46N50 81Q12 81Q80FOS: Mathematicspseudo-bosonsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaDynamic and formal equivalenceMathematical PhysicsBoson
researchProduct

Duality of reduced density matrices and their eigenvalues

2014

For states of quantum systems of N particles with harmonic interactions we prove that each reduced density matrix ρ obeys a duality condition. This condition implies duality relations for the eigenvalues λk of ρ and relates a harmonic model with length scales ${{\ell }_{1}},{{\ell }_{2}},\ldots ,{{\ell }_{N}}$ with another one with inverse lengths $1/{{\ell }_{1}},1/{{\ell }_{2}},\ldots ,1/{{\ell }_{N}}$. Entanglement entropies and correlation functions inherit duality from ρ. Self-duality can only occur for noninteracting particles in an isotropic harmonic trap.

Statistics and ProbabilityPhysicsQuantum PhysicsIsotropyFOS: Physical sciencesGeneral Physics and AstronomyInverseDuality (optimization)Statistical and Nonlinear PhysicsHarmonic (mathematics)Mathematical Physics (math-ph)Quantum entanglementMathematics::Spectral Theory16. Peace & justiceModeling and SimulationReduced density matrixQuantum Physics (quant-ph)QuantumEigenvalues and eigenvectorsMathematical PhysicsMathematical physics
researchProduct

Non linear pseudo-bosons versus hidden Hermiticity. II: The case of unbounded operators

2012

Parallels between the notions of nonlinear pseudobosons and of an apparent non-Hermiticity of observables as shown in paper I (arXiv: 1109.0605) are demonstrated to survive the transition to the quantum models based on the use of unbounded metric in the Hilbert space of states.

Statistics and ProbabilityPhysicsQuantum PhysicsParallelism (rhetoric)Hilbert spaceFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsObservableMathematical Physics (math-ph)Nonlinear systemsymbols.namesakeModeling and SimulationMetric (mathematics)symbolspseudo-bosonsQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaQuantumMathematical PhysicsMathematical physicsBoson
researchProduct

Cauchy flights in confining potentials

2009

We analyze confining mechanisms for L\'evy flights evolving under an influence of external potentials. Given a stationary probability density function (pdf), we address the reverse engineering problem: design a jump-type stochastic process whose target pdf (eventually asymptotic) equals the preselected one. To this end, dynamically distinct jump-type processes can be employed. We demonstrate that one "targeted stochasticity" scenario involves Langevin systems with a symmetric stable noise. Another derives from the L\'evy-Schr\"odinger semigroup dynamics (closely linked with topologically induced super-diffusions), which has no standard Langevin representation. For computational and visualiz…

Statistics and ProbabilityPhysicsQuantum PhysicsStationary distributionStatistical Mechanics (cond-mat.stat-mech)Stochastic processSemigroupMathematical analysisFOS: Physical sciencesCauchy distributionProbability density functionMathematical Physics (math-ph)Condensed Matter PhysicsLangevin equationLévy flightQuantum Physics (quant-ph)Representation (mathematics)Mathematical PhysicsCondensed Matter - Statistical Mechanics
researchProduct

Linear pseudo-fermions

2012

In a recent series of papers we have analyzed a certain deformation of the canonical commutation relations producing an interesting functional structure which has been proved to have some connections with physics, and in particular with quasi-hermitian quantum mechanics. Here we repeat a similar analysis starting with the canonical anticommutation relations. We will show that in this case most of the assumptions needed in the former situation are automatically satisfied, making our construction rather {\em friendly}. We discuss some examples of our construction, again related to quasi-hermitian quantum mechanics, and the bi-coherent states for the system.

Statistics and ProbabilityPhysicsSeries (mathematics)pseudo-fermionsStructure (category theory)General Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsFermionMathematical Physics (math-ph)Deformation (meteorology)Theoretical physicsModeling and SimulationSettore MAT/07 - Fisica MatematicaMathematical Physics
researchProduct

On form-factor expansions for the XXZ chain in the massive regime

2014

We study the large-volume-$L$ limit of form factors of the longitudinal spin operators for the XXZ spin-$1/2$ chain in the massive regime. We find that the individual form factors decay as $L^{-n}$, $n$ being an even integer counting the number of physical excitations -- the holes -- that constitute the excited state. Our expression allows us to derive the form-factor expansion of two-point spin-spin correlation functions in the thermodynamic limit $L\rightarrow +\infty$. The staggered magnetisation appears naturally as the first term in this expansion. We show that all other contributions to the two-point correlation function are exponentially small in the large-distance regime.

Statistics and ProbabilityPhysicsStatistical Mechanics (cond-mat.stat-mech)Nonlinear Sciences - Exactly Solvable and Integrable SystemsForm factor (quantum field theory)FOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)IntegerChain (algebraic topology)Correlation functionExcited stateThermodynamic limitCondensed Matter::Strongly Correlated ElectronsLimit (mathematics)Exactly Solvable and Integrable Systems (nlin.SI)Statistics Probability and UncertaintyCondensed Matter - Statistical MechanicsMathematical PhysicsMathematical physicsSpin-½
researchProduct

Thermalization of Random Motion in Weakly Confining Potentials

2010

We show that in weakly confining conservative force fields, a subclass of diffusion-type (Smoluchowski) processes, admits a family of "heavy-tailed" non-Gaussian equilibrium probability density functions (pdfs), with none or a finite number of moments. These pdfs, in the standard Gibbs-Boltzmann form, can be also inferred directly from an extremum principle, set for Shannon entropy under a constraint that the mean value of the force potential has been a priori prescribed. That enforces the corresponding Lagrange multiplier to play the role of inverse temperature. Weak confining properties of the potentials are manifested in a thermodynamical peculiarity that thermal equilibria can be approa…

Statistics and ProbabilityPhysicsStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)FOS: Physical sciencesStatistical and Nonlinear PhysicsProbability density functionMathematical Physics (math-ph)Interval (mathematics)symbols.namesakeThermalisationPhysics - Data Analysis Statistics and ProbabilityLagrange multiplierBounded functionFOS: MathematicssymbolsFinite setConservative forceCondensed Matter - Statistical MechanicsMathematics - ProbabilityData Analysis Statistics and Probability (physics.data-an)Mathematical PhysicsBrownian motionMathematical physicsOpen Systems & Information Dynamics
researchProduct

Contour calculus for many-particle functions

2019

In non-equilibrium many-body perturbation theory, Langreth rules are an efficient way to extract real-time equations from contour ones. However, the standard rules are not applicable in cases that do not reduce to simple convolutions and multiplications. We introduce a procedure for extracting real-time equations from general multi-argument contour functions with an arbitrary number of arguments. This is done for both the standard Keldysh contour, as well as the extended contour with a vertical track that allows for general initial states. This amounts to the generalization of the standard Langreth rules to much more general situations. These rules involve multi-argument retarded functions …

Statistics and ProbabilityPhysicsnon-equilibrium Green's functionsFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)medicine.disease01 natural sciencesKeldysh formalism010305 fluids & plasmasLangreth rulesModeling and Simulation0103 physical sciencesquantum many-body theorymedicineCalculusParticleKeldysh formalism010306 general physicskvanttifysiikkaMathematical PhysicsCalculus (medicine)
researchProduct

Generalized Riesz systems and orthonormal sequences in Krein spaces

2018

We analyze special classes of bi-orthogonal sets of vectors in Hilbert and in Krein spaces, and their relations with generalized Riesz systems. In this way, the notion of the first/second type sequences is introduced and studied. We also discuss their relevance in some concrete quantum mechanical system driven by manifestly non self-adjoint Hamiltonians.

Statistics and ProbabilityPure mathematics46N50 81Q12FOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Mathematics::Spectral TheoryRiesz basisBiorthogonal sequenceModeling and SimulationPT -symmetric HamiltonianKrein spaceOrthonormal basisSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsJournal of Physics A: Mathematical and Theoretical
researchProduct