Search results for "math-ph"

showing 10 items of 525 documents

Implementability of Liouville Evolution, Koopman and Banach-Lamperti Theorems in Classical and Quantum Dynamics

2002

We extend the concept of implementability of semigroups of evolution operators associated with dynamical systems to quantum case. We show that such an extension can be properly formulated in terms of Jordan morphisms and isometries on non-commutative Lp spaces. We focus our attention on a non-commutative analog of the Banach-Lamperti theorem.

Statistics and ProbabilityPure mathematics82C10; 46L55Dynamical systems theory82C1046L55Quantum dynamicsComplex systemFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Extension (predicate logic)MorphismLp spaceFocus (optics)QuantumMathematical PhysicsMathematicsOpen Systems & Information Dynamics
researchProduct

Non-self-adjoint Hamiltonians with complex eigenvalues

2016

Motivated by what one observes dealing with PT-symmetric quantum mechanics, we discuss what happens if a physical system is driven by a diagonalizable Hamiltonian with not all real eigenvalues. In particular, we consider the functional structure related to systems living in finite-dimensional Hilbert spaces, and we show that certain intertwining relations can be deduced also in this case if we introduce suitable antilinear operators. We also analyze a simple model, computing the transition probabilities in the broken and in the unbroken regime.

Statistics and ProbabilityPure mathematicsDiagonalizable matrixPhysical systemFOS: Physical sciencesGeneral Physics and Astronomyintertwining relation01 natural sciencesModeling and simulationPhysics and Astronomy (all)symbols.namesakePT-quantum mechanic0103 physical sciencesMathematical Physic010306 general physicsSettore MAT/07 - Fisica Matematicaantilinear operatorMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum Physics010308 nuclear & particles physicsHilbert spaceStatistical and Nonlinear PhysicsProbability and statisticsMathematical Physics (math-ph)Modeling and SimulationsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Self-adjoint operatorStatistical and Nonlinear PhysicJournal of Physics A: Mathematical and Theoretical
researchProduct

Gibbs states defined by biorthogonal sequences

2016

Motivated by the growing interest on PT-quantum mechanics, in this paper we discuss some facts on generalized Gibbs states and on their related KMS-like conditions. To achieve this, we first consider some useful connections between similar (Hamiltonian) operators and we propose some extended version of the Heisenberg algebraic dynamics, deducing some of their properties, useful for our purposes.

Statistics and ProbabilityPure mathematicsGibbs stateGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesPhysics and Astronomy (all)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesnon-Hermitian HamiltonianMathematical PhysicBiorthogonal sets of vectorAlgebraic number010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsQuantum Physics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Modeling and SimulationBiorthogonal systemsymbolsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Statistical and Nonlinear Physic
researchProduct

Partial inner product spaces, metric operators and generalized hermiticity

2013

Motivated by the recent developments of pseudo-hermitian quantum mechanics, we analyze the structure of unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP space). Next, we introduce several generalizations of the notion of similarity between operators and explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, we reformulate the notion of pseudo-hermitian operators in the preceding formalism.

Statistics and ProbabilityPure mathematicsQuantum PhysicsSpectral propertiesHilbert spaceFOS: Physical sciencesGeneral Physics and Astronomymetric operatorStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Formalism (philosophy of mathematics)symbols.namesakeInner product spaceOperator (computer programming)pip-spacesSettore MAT/05 - Analisi MatematicaModeling and SimulationLattice (order)symbolsgeneralized hermiticityQuantum Physics (quant-ph)Mathematical PhysicsMathematics
researchProduct

Hamiltonians defined by biorthogonal sets

2017

In some recent papers, the studies on biorthogonal Riesz bases has found a renewed motivation because of their connection with pseudo-hermitian Quantum Mechanics, which deals with physical systems described by Hamiltonians which are not self-adjoint but still may have real point spectra. Also, their eigenvectors may form Riesz, not necessarily orthonormal, bases for the Hilbert space in which the model is defined. Those Riesz bases allow a decomposition of the Hamiltonian, as already discussed is some previous papers. However, in many physical models, one has to deal not with o.n. bases or with Riesz bases, but just with biorthogonal sets. Here, we consider the more general concept of $\mat…

Statistics and ProbabilityPure mathematicsReal pointbiorthogonal setquasi-basesMathematics::Classical Analysis and ODEsPhysical systemFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencessymbols.namesake0103 physical sciencesOrthonormal basis0101 mathematics010306 general physicsMathematical PhysicsEigenvalues and eigenvectorsMathematicsQuantum PhysicsMathematics::Functional Analysis010102 general mathematicsHilbert spaceStatistical and Nonlinear PhysicsMathematical Physics (math-ph)pseudo-Hermitian HamiltonianModeling and SimulationBiorthogonal systemsymbolsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)
researchProduct

Mathematical aspects of intertwining operators: the role of Riesz bases

2010

In this paper we continue our analysis of intertwining relations for both self-adjoint and not self-adjoint operators. In particular, in this last situation, we discuss the connection with pseudo-hermitian quantum mechanics and the role of Riesz bases.

Statistics and ProbabilityQuantum PhysicsComputer scienceGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsRiesz basesMathematical Physics (math-ph)Intertwining operatorMathematics::Spectral TheoryConnection (mathematics)AlgebraModeling and SimulationQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsSelf-adjoint operator
researchProduct

A Swanson-like Hamiltonian and the inverted harmonic oscillator

2022

We deduce the eigenvalues and the eigenvectors of a parameter-dependent Hamiltonian $H_\theta$ which is closely related to the Swanson Hamiltonian, and we construct bi-coherent states for it. After that, we show how and in which sense the eigensystem of the Hamiltonian $H$ of the inverted quantum harmonic oscillator can be deduced from that of $H_\theta$. We show that there is no need to introduce a different scalar product using some ad hoc metric operator, as suggested by other authors. Indeed we prove that a distributional approach is sufficient to deal with the Hamiltonian $H$ of the inverted oscillator.

Statistics and ProbabilityQuantum PhysicsModeling and SimulationGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Quantum Physics (quant-ph)bi-coherent statesinverted harmonic oscillatorMathematical PhysicsSwanson Hamiltonian
researchProduct

Abstract ladder operators and their applications

2021

We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation r…

Statistics and ProbabilityQuantum PhysicsPure mathematicsGeneralized Heisenberg algebraFOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)ladder operatorsLadder operatorModeling and Simulationpseudo-bosonsAlgebra over a fieldQuantum Physics (quant-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsJournal of Physics A: Mathematical and Theoretical
researchProduct

Unifying approach to the quantification of bipartite correlations by Bures distance

2014

The notion of distance defined on the set of states of a composite quantum system can be used to quantify total, quantum and classical correlations in a unifying way. We provide new closed formulae for classical and total correlations of two-qubit Bell-diagonal states by considering the Bures distance. Complementing the known corresponding expressions for entanglement and more general quantum correlations, we thus complete the quantitative hierarchy of Bures correlations for Bell-diagonal states. We then explicitly calculate Bures correlations for two relevant families of states: Werner states and rank-2 Bell-diagonal states, highlighting the subadditivity which holds for total correlations…

Statistics and ProbabilityQuantum decoherenceSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciBures distanceGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementSettore FIS/03 - Fisica Della MateriaPhysics and Astronomy (all)classical correlationSubadditivityQuantum systemMathematical PhysicStatistical physicsQuantum informationdecoherenceQuantumMathematical Physicsquantum correlationMathematicsQuantum PhysicsStatistical and Nonlinear PhysicsProbability and statisticsQuantum PhysicsMathematical Physics (math-ph)QubitModeling and SimulationQuantum Physics (quant-ph)Statistical and Nonlinear Physic
researchProduct

A quantum particle in a box with moving walls

2013

We analyze the non-relativistic problem of a quantum particle that bounces back and forth between two moving walls. We recast this problem into the equivalent one of a quantum particle in a fixed box whose dynamics is governed by an appropriate time-dependent Schroedinger operator.

Statistics and ProbabilitySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciDifferential equationFOS: Physical sciencesGeneral Physics and AstronomySettore FIS/03 - Fisica Della MateriaSchrödinger equationsymbols.namesakeBoundary ConditionMathematical PhysicsQuantum Mechanics; Boundary Conditions; Quantum Zeno effect; Time-dependent HamiltoniansPhysicsQuantum PhysicsQuantum particlePartial differential equationOperator (physics)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)Quantum MechanicWave equationClassical mechanicsModeling and SimulationsymbolsQuantum Zeno effectQuantum Physics (quant-ph)Time-dependent HamiltoniansSchrödinger's cat
researchProduct