Search results for "math-ph"
showing 10 items of 525 documents
Implementability of Liouville Evolution, Koopman and Banach-Lamperti Theorems in Classical and Quantum Dynamics
2002
We extend the concept of implementability of semigroups of evolution operators associated with dynamical systems to quantum case. We show that such an extension can be properly formulated in terms of Jordan morphisms and isometries on non-commutative Lp spaces. We focus our attention on a non-commutative analog of the Banach-Lamperti theorem.
Non-self-adjoint Hamiltonians with complex eigenvalues
2016
Motivated by what one observes dealing with PT-symmetric quantum mechanics, we discuss what happens if a physical system is driven by a diagonalizable Hamiltonian with not all real eigenvalues. In particular, we consider the functional structure related to systems living in finite-dimensional Hilbert spaces, and we show that certain intertwining relations can be deduced also in this case if we introduce suitable antilinear operators. We also analyze a simple model, computing the transition probabilities in the broken and in the unbroken regime.
Gibbs states defined by biorthogonal sequences
2016
Motivated by the growing interest on PT-quantum mechanics, in this paper we discuss some facts on generalized Gibbs states and on their related KMS-like conditions. To achieve this, we first consider some useful connections between similar (Hamiltonian) operators and we propose some extended version of the Heisenberg algebraic dynamics, deducing some of their properties, useful for our purposes.
Partial inner product spaces, metric operators and generalized hermiticity
2013
Motivated by the recent developments of pseudo-hermitian quantum mechanics, we analyze the structure of unbounded metric operators in a Hilbert space. It turns out that such operators generate a canonical lattice of Hilbert spaces, that is, the simplest case of a partial inner product space (PIP space). Next, we introduce several generalizations of the notion of similarity between operators and explore to what extend they preserve spectral properties. Then we apply some of the previous results to operators on a particular PIP space, namely, a scale of Hilbert spaces generated by a metric operator. Finally, we reformulate the notion of pseudo-hermitian operators in the preceding formalism.
Hamiltonians defined by biorthogonal sets
2017
In some recent papers, the studies on biorthogonal Riesz bases has found a renewed motivation because of their connection with pseudo-hermitian Quantum Mechanics, which deals with physical systems described by Hamiltonians which are not self-adjoint but still may have real point spectra. Also, their eigenvectors may form Riesz, not necessarily orthonormal, bases for the Hilbert space in which the model is defined. Those Riesz bases allow a decomposition of the Hamiltonian, as already discussed is some previous papers. However, in many physical models, one has to deal not with o.n. bases or with Riesz bases, but just with biorthogonal sets. Here, we consider the more general concept of $\mat…
Mathematical aspects of intertwining operators: the role of Riesz bases
2010
In this paper we continue our analysis of intertwining relations for both self-adjoint and not self-adjoint operators. In particular, in this last situation, we discuss the connection with pseudo-hermitian quantum mechanics and the role of Riesz bases.
A Swanson-like Hamiltonian and the inverted harmonic oscillator
2022
We deduce the eigenvalues and the eigenvectors of a parameter-dependent Hamiltonian $H_\theta$ which is closely related to the Swanson Hamiltonian, and we construct bi-coherent states for it. After that, we show how and in which sense the eigensystem of the Hamiltonian $H$ of the inverted quantum harmonic oscillator can be deduced from that of $H_\theta$. We show that there is no need to introduce a different scalar product using some ad hoc metric operator, as suggested by other authors. Indeed we prove that a distributional approach is sufficient to deal with the Hamiltonian $H$ of the inverted oscillator.
Abstract ladder operators and their applications
2021
We consider a rather general version of ladder operator $Z$ used by some authors in few recent papers, $[H_0,Z]=\lambda Z$ for some $\lambda\in\mathbb{R}$, $H_0=H_0^\dagger$, and we show that several interesting results can be deduced from this formula. Then we extend it in two ways: first we replace the original equality with formula $[H_0,Z]=\lambda Z[Z^\dagger, Z]$, and secondly we consider $[H,Z]=\lambda Z$ for some $\lambda\in\mathbb{C}$, $H\neq H^\dagger$. In both cases many applications are discussed. In particular we consider factorizable Hamiltonians and Hamiltonians written in terms of operators satisfying the generalized Heisenberg algebra or the $\D$ pseudo-bosonic commutation r…
Unifying approach to the quantification of bipartite correlations by Bures distance
2014
The notion of distance defined on the set of states of a composite quantum system can be used to quantify total, quantum and classical correlations in a unifying way. We provide new closed formulae for classical and total correlations of two-qubit Bell-diagonal states by considering the Bures distance. Complementing the known corresponding expressions for entanglement and more general quantum correlations, we thus complete the quantitative hierarchy of Bures correlations for Bell-diagonal states. We then explicitly calculate Bures correlations for two relevant families of states: Werner states and rank-2 Bell-diagonal states, highlighting the subadditivity which holds for total correlations…
A quantum particle in a box with moving walls
2013
We analyze the non-relativistic problem of a quantum particle that bounces back and forth between two moving walls. We recast this problem into the equivalent one of a quantum particle in a fixed box whose dynamics is governed by an appropriate time-dependent Schroedinger operator.