Search results for "math-ph"

showing 10 items of 525 documents

Smooth and non-smooth traveling wave solutions of some generalized Camassa–Holm equations

2014

In this paper we employ two recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a recently-derived integrable family of generalized Camassa-Holm (GCH) equations. A recent, novel application of phase-plane analysis is employed to analyze the singular traveling wave equations of three of the GCH NLPDEs, i.e. the possible non-smooth peakon, cuspon and compacton solutions. Two of the GCH equations do not support singular traveling waves. The third equation supports four-segmented, non-smooth $M$-wave solutions, while the fourth supports both solitary (peakon) and periodic (cuspon) cusp waves in different parameter regimes. Moreover, sm…

Equilibrium pointCusp (singularity)Numerical AnalysisSeries (mathematics)Applied MathematicsMathematical analysisFOS: Physical sciencesGeneralized Camassa-Holm Equations Traveling waves Homoclinic and Heteroclinic OrbitsMathematical Physics (math-ph)PeakonModeling and SimulationSaddle pointHomoclinic orbitMathematical PhysicsSaddleConvergent seriesMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Regular and singular pulse and front solutions and possible isochronous behavior in the short-pulse equation: Phase-plane, multi-infinite series and …

2014

In this paper we employ three recent analytical approaches to investigate the possible classes of traveling wave solutions of some members of a family of so-called short-pulse equations (SPE). A recent, novel application of phase-plane analysis is first employed to show the existence of breaking kink wave solutions in certain parameter regimes. Secondly, smooth traveling waves are derived using a recent technique to derive convergent multi-infinite series solutions for the homoclinic (heteroclinic) orbits of the traveling-wave equations for the SPE equation, as well as for its generalized version with arbitrary coefficients. These correspond to pulse (kink or shock) solutions respectively o…

Equilibrium pointNumerical AnalysisNonlinear Sciences - Exactly Solvable and Integrable SystemsSeries (mathematics)Homoclinic and heteroclinic orbitApplied MathematicsMathematical analysisFOS: Physical sciencesMathematical Physics (math-ph)Phase planeTraveling waveNonlinear systemSPE and generalized SPE equationModeling and SimulationSaddle pointHomoclinic orbitExactly Solvable and Integrable Systems (nlin.SI)Singular solutionVariational solitary wavesSettore MAT/07 - Fisica MatematicaMathematical PhysicsConvergent seriesAnsatzMathematicsCommunications in Nonlinear Science and Numerical Simulation
researchProduct

Integrable systems and moduli spaces of curves

2016

This document has the purpose of presenting in an organic way my research on integrable systems originating from the geometry of moduli spaces of curves, with applications to Gromov-Witten theory and mirror symmetry. The text contains a short introduction to the main ideas and prerequisites of the subject from geometry and mathematical physics, followed by a synthetic review of some of my papers (listed below) starting from my PhD thesis (October 2008), and with some open questions and future developements. My results include: • the triple mirror symmetry among P 1-orbifolds with positive Euler characteristic , the Landau-Ginzburg model with superpotential −xyz + x p + y q + z r with 1 p + …

Espaces de modules de courbes[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]mirror symmetrycohomological field theoriestautological ringsystèmes intégrablesintegrable systems[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]moduli spaces of stable curvesGromov-Witten theory[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]quantization[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]Mathematics::Symplectic Geometry
researchProduct

RationalizeRoots: Software Package for the Rationalization of Square Roots

2019

The computation of Feynman integrals often involves square roots. One way to obtain a solution in terms of multiple polylogarithms is to rationalize these square roots by a suitable variable change. We present a program that can be used to find such transformations. After an introduction to the theoretical background, we explain in detail how to use the program in practice.

FOS: Computer and information sciencesComputer Science - Symbolic ComputationHigh Energy Physics - TheoryHigh energy particleFeynman integralComputationGeneral Physics and AstronomyFOS: Physical sciencesengineering.materialSymbolic Computation (cs.SC)Rationalization (economics)01 natural sciences010305 fluids & plasmasHigh Energy Physics - Phenomenology (hep-ph)Square root0103 physical sciencesComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic number010306 general physicsMathematical PhysicsVariable (mathematics)MapleMathematical Physics (math-ph)AlgebraHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Hardware and ArchitectureengineeringComputer Science - Mathematical SoftwareMathematical Software (cs.MS)
researchProduct

Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model

2010

A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…

FOS: Computer and information sciencesComputer scienceMonte Carlo methodGraphics processing unitFOS: Physical sciencesGeneral Physics and AstronomyMathematical Physics (math-ph)Parallel computingGPU clusterComputational Physics (physics.comp-ph)Graphics (cs.GR)Computational scienceCUDAComputer Science - GraphicsHardware and ArchitectureIsing modelCentral processing unitGeneral-purpose computing on graphics processing unitsMassively parallelPhysics - Computational PhysicsMathematical Physics
researchProduct

A novel exact representation of stationary colored Gaussian processes (fractional differential approach)

2010

A novel representation of functions, called generalized Taylor form, is applied to the filtering of white noise processes. It is shown that every Gaussian colored noise can be expressed as the output of a set of linear fractional stochastic differential equations whose solution is a weighted sum of fractional Brownian motions. The exact form of the weighting coefficients is given and it is shown that it is related to the fractional moments of the target spectral density of the colored noise.

FOS: Computer and information sciencesStatistics and ProbabilityDifferential equationFOS: Physical sciencesGeneral Physics and AstronomyStatistics - ComputationStochastic differential equationsymbols.namesakeSpectral MomentsApplied mathematicsStationary processeGaussian processCondensed Matter - Statistical MechanicsComputation (stat.CO)Mathematical PhysicsMathematicsGeneralized functionStatistical Mechanics (cond-mat.stat-mech)Statistical and Nonlinear PhysicsMathematical Physics (math-ph)White noiseClosed and exact differential formsColors of noiseGaussian noiseFractional CalculuModeling and SimulationsymbolsSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Quantum Toda Lattice: a Challenge for Representation Theory

2021

Quantum Toda lattice may solved by means of the Representation Theory of semisimple Lie groups, or alternatively by using the technique of the Quantum Inverse Scattering Method. A comparison of the two approaches, which is the purpose of the present review article, sheds a new light on Representation Theory and leads to a number of challenging questions.

FOS: MathematicsFOS: Physical sciences16T25 17B35 17B37 22E46 33B15 33C15Mathematical Physics (math-ph)[MATH] Mathematics [math]Representation Theory (math.RT)Mathematics - Representation TheoryMathematical PhysicsProceedings of Symposia in Pure Mathematics
researchProduct

Free boundary methods and non-scattering phenomena

2021

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

FOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Analysis of PDEs (math.AP)
researchProduct

Perfectly matched layers for the stationary Schrodinger equation in a periodic structure

2008

We construct a perfectly matched absorbing layer for stationary Schrodinger equation with analytic slowly decaying potential in a periodic structure. We prove the unique solvability of the problem with perfectly matched layer of finite length and show that solution to this problem approximates a solution to the original problem with an error that exponentially tends to zero as the length of perfectly matched layer tends to infinity.

FOS: MathematicsFOS: Physical sciencesMathematical Physics (math-ph)Numerical Analysis (math.NA)Mathematics - Numerical AnalysisMathematical Physics
researchProduct

Coherent Quantum Tomography

2016

We discuss a quantum mechanical indirect measurement method to recover a position dependent Hamilton matrix from time evolution of coherent quantum mechanical states through an object. A mathematical formulation of this inverse problem leads to weighted X-ray transforms where the weight is a matrix. We show that such X-ray transforms are injective with very rough weights. Consequently, we can solve our quantum mechanical inverse problem in several settings, but many physically relevant problems we pose also remain open. We discuss the physical background of the proposed imaging method in detail. We give a rigorous mathematical treatment of a neutrino tomography method that has been previous…

FOS: Physical sciences01 natural sciencesMatrix (mathematics)neutrino physics0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsStatistical physics0101 mathematics010306 general physicsQuantumMathematical PhysicsMathematicsQuantum Physicsinverse problemsgeophysicsApplied Mathematicsta111quantum mechanics010102 general mathematicsMathematical analysisTime evolutionweighted ray transformsMathematical Physics (math-ph)81Q99 81V99 86A22 44A12Inverse problemQuantum tomographyInjective functionComputational MathematicsMathematics - Classical Analysis and ODEsTomographyNeutrinoQuantum Physics (quant-ph)AnalysisSIAM Journal on Mathematical Analysis
researchProduct