Search results for "math.MP"
showing 10 items of 115 documents
Remembering Ludwig Dmitrievich Faddeev, Our Lifelong Partner in Mathematical Physics
2018
International audience; We briefly recount the long friendship that developed between Ludwig and us (Moshé Flato and I), since we first met at ICM 1966 in Moscow. That friendship extended to his school and family, and persists to this day. Its strong personal impact and main scientific components are sketched, including reflections on what mathematical physics is (or should be).
Higher order Peregrine breathers and multi-rogue waves solutions of the NLS equation
2012
This work is a continuation of a recent paper in which we have constructed a multi-parametric family of solutions of the focusing NLS equation given in terms of wronskians determinants of order 2N composed of elementary trigonometric functions. When we perform a special passage to the limit when all the periods tend to infinity, we get a family of quasi-rational solutions. Here we construct Peregrine breathers of orders N=4, 5, 6 and the multi-rogue waves corresponding in the frame of the NLS model first explained by Matveev et al. in 2010. In the cases N=4, 5, 6 we get convenient formulas to study the deformation of higher Peregrine breather of order 4, 5 and 6 to the multi-rogue waves via…
An attempt to classification of the quasi rational solutions to the NLS equation
2015
Based on a representation in terms of determinants of order 2N , an attempt to classification of quasi rational solutions to the one dimensional focusing nonlinear Schrödinger equation (NLS) is given and several conjectures about the structure of the solutions are also formulated. These solutions can be written as a product of an exponential depending on t by a quotient of two polynomials of degree N (N + 1) in x and t depending on 2N −2 parameters. It is remarkable to mention that in this representation, when all parameters are equal to 0, we recover the PN breathers.
Ten-parameters deformations of the sixth order Peregrine breather solutions of the NLS equation.
2013
In this paper, we construct new deformations of the Peregrine breather of order 6 with 10 real parameters. We obtain new families of quasi-rational solutions of the NLS equation. With this method, we construct new patterns of different types of rogue waves. We get as already found for the lower order, the triangular configurations and rings isolated. Moreover, one sees for certain values of the parameters the appearance of new configurations of concentric rings.
N-order rational solutions to the Johnson equation depending on 2N - 2 parameter
2017
International audience; We construct rational solutions of order N depending on 2N-2 parameters. They can be written as a quotient of 2 polynomials of degree 2N(N+1) in x, t and 2N(N+1) in y depending on 2N-2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x,y) and their evolution according to time and parameters a1,a2,a3,b1,b2,b3.
Rational solutions to the Johnson equation of order N depending on 2N − 2 parameters
2019
We construct rational solutions of order N depending on 2N − 2 parameters. They can be written as a quotient of 2 polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N − 2 parameters. We explicitly construct the expressions of the rational solutions of order 4 depending on 6 real parameters and we study the patterns of their modulus in the plane (x, y) and their evolution according to time and parameters a1, a2, a3, b1, b2, b3.
Fredholm and wronskian representations of solutions to the Johnson equation and the third order case
2019
We construct solutions to the Johnson equation (J) by means of Fred-holm determinants first, then by means of wronskians of order 2N giving solutions of order N depending on 2N − 1 parameters. We obtain N order rational solutions which can be written as a quotient of two polynomials of degree 2N (N + 1) in x, t and 4N (N + 1) in y depending on 2N − 2 parameters. This method gives an infinite hierarchy of solutions to the Johnson equation. In particular, rational solutions are obtained. The solutions of order 3 with 4 parameters are constructed and studied in detail by means of their modulus in the (x, y) plane in function of time t and parameters a1, a2, b1, b2.
Multi-parametric families solutions to the Burgers equation
2021
We construct 2N real parameter solutions to the Burgers' equation in terms of determinant of order N and we call these solutions, N order solutions. We deduce general expressions of these solutions in terms of exponentials and study the patterns of these solutions in functions of the parameters for N = 1 until N = 4.
Geometric optimal control and two-level dissipative quantum systems
2009
International audience; The objective of this article is to present techniques of geometric time-optimal control developed to analyze the control of two-level dissipative quantum systems. Combined with numerical simulations they allow to compute the time-minimal control using a shooting method. The robustness with respect to initial conditions and dissipative parameters is also analyzed using a continuation method.
Time-Minimal Control of Dissipative Two-Level Quantum Systems: The Generic Case
2009
International audience; The objective of this article is to complete preliminary results from [5], [17] concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. The extremal system is described by a 3-D-Hamiltonian depending upon three parameters. We combine geometric techniques with numerical simulations to deduce the optimal solutions.